139 research outputs found

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Cognitive Reasoning for Compliant Robot Manipulation

    Get PDF
    Physically compliant contact is a major element for many tasks in everyday environments. A universal service robot that is utilized to collect leaves in a park, polish a workpiece, or clean solar panels requires the cognition and manipulation capabilities to facilitate such compliant interaction. Evolution equipped humans with advanced mental abilities to envision physical contact situations and their resulting outcome, dexterous motor skills to perform the actions accordingly, as well as a sense of quality to rate the outcome of the task. In order to achieve human-like performance, a robot must provide the necessary methods to represent, plan, execute, and interpret compliant manipulation tasks. This dissertation covers those four steps of reasoning in the concept of intelligent physical compliance. The contributions advance the capabilities of service robots by combining artificial intelligence reasoning methods and control strategies for compliant manipulation. A classification of manipulation tasks is conducted to identify the central research questions of the addressed topic. Novel representations are derived to describe the properties of physical interaction. Special attention is given to wiping tasks which are predominant in everyday environments. It is investigated how symbolic task descriptions can be translated into meaningful robot commands. A particle distribution model is used to plan goal-oriented wiping actions and predict the quality according to the anticipated result. The planned tool motions are converted into the joint space of the humanoid robot Rollin' Justin to perform the tasks in the real world. In order to execute the motions in a physically compliant fashion, a hierarchical whole-body impedance controller is integrated into the framework. The controller is automatically parameterized with respect to the requirements of the particular task. Haptic feedback is utilized to infer contact and interpret the performance semantically. Finally, the robot is able to compensate for possible disturbances as it plans additional recovery motions while effectively closing the cognitive control loop. Among others, the developed concept is applied in an actual space robotics mission, in which an astronaut aboard the International Space Station (ISS) commands Rollin' Justin to maintain a Martian solar panel farm in a mock-up environment. This application demonstrates the far-reaching impact of the proposed approach and the associated opportunities that emerge with the availability of cognition-enabled service robots

    Optimization-based control and planning for highly dynamic legged locomotion in complex environments

    Get PDF
    Legged animals can dynamically traverse unstructured environments in an elegant and efficient manner, whether it be running down a steep hill or leaping between branches. To harness part of the animal agility to the legged robot would unlock potential applications such as disaster response and planetary exploration. The unique challenge of these tasks is that the robot has to produce highly dynamic maneuvers in complex environments with minimum human guidance. This thesis explores how an optimization-based method can be applied in the control and planning of highly dynamic legged motions to address the locomotion problem in complex environments. Specifically, this work first describes the design synthesis of a small and agile quadrupedal robot \panther. Based on the quadruped platform, we developed a model predictive control (MPC) control framework to realize complex 3D acrobatic motions without resorting to switching among controllers. We present the MPC formulation that directly uses the rotation matrix, which avoids the singularity issue associated with Euler angles. Motion planning algorithms are developed for planar-legged robot traversing challenging terrains. Dynamic trajectories that simultaneously reason about contact, centroidal dynamics, and joint torque limit are obtained by solving mixed-integer convex programs (MICP) without requiring any initial guess from the operator. We further reduce the computational expense of long-horizon planning by leveraging the benefits of both optimization and sampling-based approaches for a simple legged robot. Finally, we present experimental results for each topic on legged robot hardware to validate the proposed method. It is our hope that the results presented in this thesis will eventually enable legged robots to achieve mobility autonomy at the level of biological systems

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Gaze control modelling and robotic implementation

    Get PDF
    Although we have the impression that we can process the entire visual field in a single fixation, in reality we would be unable to fully process the information outside of foveal vision if we were unable to move our eyes. Because of acuity limitations in the retina, eye movements are necessary for processing the details of the array. Our ability to discriminate fine detail drops off markedly outside of the fovea in the parafovea (extending out to about 5 degrees on either side of fixation) and in the periphery (everything beyond the parafovea). While we are reading or searching a visual array for a target or simply looking at a new scene, our eyes move every 200-350 ms. These eye movements serve to move the fovea (the high resolution part of the retina encompassing 2 degrees at the centre of the visual field) to an area of interest in order to process it in greater detail. During the actual eye movement (or saccade), vision is suppressed and new information is acquired only during the fixation (the period of time when the eyes remain relatively still). While it is true that we can move our attention independently of where the eyes are fixated, it does not seem to be the case in everyday viewing. The separation between attention and fixation is often attained in very simple tasks; however, in tasks like reading, visual search, and scene perception, covert attention and overt attention (the exact eye location) are tightly linked. Because eye movements are essentially motor movements, it takes time to plan and execute a saccade. In addition, the end-point is pre-selected before the beginning of the movement. There is considerable evidence that the nature of the task influences eye movements. Depending on the task, there is considerable variability both in terms of fixation durations and saccade lengths. It is possible to outline five separate movement systems that put the fovea on a target and keep it there. Each of these movement systems shares the same effector pathway—the three bilateral groups of oculomotor neurons in the brain stem. These five systems include three that keep the fovea on a visual target in the environment and two that stabilize the eye during head movement. Saccadic eye movements shift the fovea rapidly to a visual target in the periphery. Smooth pursuit movements keep the image of a moving target on the fovea. Vergence movements move the eyes in opposite directions so that the image is positioned on both foveae. Vestibulo-ocular movements hold images still on the retina during brief head movements and are driven by signals from the vestibular system. Optokinetic movements hold images during sustained head rotation and are driven by visual stimuli. All eye movements but vergence movements are conjugate: each eye moves the same amount in the same direction. Vergence movements are disconjugate: The eyes move in different directions and sometimes by different amounts. Finally, there are times that the eye must stay still in the orbit so that it can examine a stationary object. Thus, a sixth system, the fixation system, holds the eye still during intent gaze. This requires active suppression of eye movement. Vision is most accurate when the eyes are still. When we look at an object of interest a neural system of fixation actively prevents the eyes from moving. The fixation system is not as active when we are doing something that does not require vision, for example, mental arithmetic. Our eyes explore the world in a series of active fixations connected by saccades. The purpose of the saccade is to move the eyes as quickly as possible. Saccades are highly stereotyped; they have a standard waveform with a single smooth increase and decrease of eye velocity. Saccades are extremely fast, occurring within a fraction of a second, at speeds up to 900°/s. Only the distance of the target from the fovea determines the velocity of a saccadic eye movement. We can change the amplitude and direction of our saccades voluntarily but we cannot change their velocities. Ordinarily there is no time for visual feedback to modify the course of the saccade; corrections to the direction of movement are made in successive saccades. Only fatigue, drugs, or pathological states can slow saccades. Accurate saccades can be made not only to visual targets but also to sounds, tactile stimuli, memories of locations in space, and even verbal commands (“look left”). The smooth pursuit system keeps the image of a moving target on the fovea by calculating how fast the target is moving and moving the eyes accordingly. The system requires a moving stimulus in order to calculate the proper eye velocity. Thus, a verbal command or an imagined stimulus cannot produce smooth pursuit. Smooth pursuit movements have a maximum velocity of about 100°/s, much slower than saccades. The saccadic and smooth pursuit systems have very different central control systems. A coherent integration of these different eye movements, together with the other movements, essentially corresponds to a gating-like effect on the brain areas controlled. The gaze control can be seen in a system that decides which action should be enabled and which should be inhibited and in another that improves the action performance when it is executed. It follows that the underlying guiding principle of the gaze control is the kind of stimuli that are presented to the system, by linking therefore the task that is going to be executed. This thesis aims at validating the strong relation between actions and gaze. In the first part a gaze controller has been studied and implemented in a robotic platform in order to understand the specific features of prediction and learning showed by the biological system. The eye movements integration opens the problem of the best action that should be selected when a new stimuli is presented. The action selection problem is solved by the basal ganglia brain structures that react to the different salience values of the environment. In the second part of this work the gaze behaviour has been studied during a locomotion task. The final objective is to show how the different tasks, such as the locomotion task, imply the salience values that drives the gaze

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Stable locomotion of humanoid robots based on mass concentrated model

    Get PDF
    El estudio de la locomoción de robots humanoides es actualmente un área muy activa, en el campo de la robótica. Partiendo del principio que el hombre esta construyendo robots para trabajar juntos cooperando en ambientes humanos. La estabilidad durante la caminata es un factor crítico que prevee la caída del robot, la cual puede causar deterioros al mismo y a las personas en su entorno. De esta manera, el presente trabajo pretende resolver una parte del problema de la locomoción bípeda, esto es los métodos empleados para “La generación del paso” (“Gait generation”) y asi obtener la caminata estable. Para obtener una marcha estable se utilizan modelos de masa concentrada. De esta manera el modelo del “pendulo invertido simple” y el modelo del “carro sobre la mesa” se han utilizado para conseguir la marcha estable de robots humanoides. En el modelo del pendulo invertido, la masa el pendulo conduce el movimiento del centro de gravedad (CDG) del robot humanoide durante la marcha. Se detallara que el CDG se mueve como una bola libre sobre un plano bajo las leyes del pendulo en el campo de gravedad. Mientras que en el modelo del “carro sobre la mesa”, el carro conduce el movimiento del CDG durante la marcha. En este caso, el movimiento del carro es tratado como un sistema servocontrolado, y el movimiento del CDG es obtenido con los actuales y futuros estados de referencia del Zero Moment Point (ZMP). El método para generar el paso propuesto esta compuesto de varias capas como son Movimiento global, movimiento local, generación de patrones de movimiento, cinemática inversa y dinámica inversa y finalmente una corrección off-line. Donde la entrada en este método es la meta global (es decir la configuración final del robot, en el entorno de marcha) y las salidas son los patrones de movimiento de las articulaciones junto con el patrón de referencia del ZMP. Por otro lado, se ha propuesto el método para generar el “Paso acíclico”. Este método abarca el movimiento del paso dinámico incluyendo todo el cuerpo del robot humanoide, desde desde cuaquier postura genérica estáticamente estable hasta otra; donde las entradas son los estados inicial y final del robot (esto es los ángulos iniciales y finales de las articulaciones) y las salidas son las trayectorias de referencia de cada articulación y del ZMP. Se han obtenido resultados satisfactorios en las simulaciones y en el robot humanoide real Rh-1 desarrollado en el Robotics lab de la Universidad Carlos III de Madrid. De igual manera el movimiento innovador llamado “Paso acíclico” se ha implemenado exitosamente en el robot humanoide HRP-2 (desarrollado por el AIST e Industrias Kawada Inc., Japon). Finalmente los resultados, contribuciones y trabajos futuros se expondran y discutirán. _______________________________________________The study of humanoid robot locomotion is currently a very active area in robotics, since humans build robots to work their environments in common cooperation and in harmony. Stability during walking motion is a critical fact in preventing the robot from falling down and causing the human or itself damages. This work tries to solve a part of the locomotion problem, which is, the “Gait Generation” methods used to obtain stable walking. Mass concentrated models are used to obtain stable walking motion. Thus the inverted pendulum model and the cart-table model are used to obtain stable walking motion in humanoid robots. In the inverted pendulum model, the mass of the pendulum drives the center of gravity (COG) motion of the humanoid robot while it is walking. It will be detailed that the COG moves like a free ball on a plane under the laws of the pendulum in the field of gravity. While in the cart-table model, the cart drives the COG motion during walking motion. In this case, the cart motion is treated as a servo control system, obtaining its motion from future reference states of the ZMP. The gait generation method proposed has many layers like Global motion, local motion, motion patterns generation, inverse kinematics and inverse dynamics and finally off-line correction. When the input in the gait generation method is the global goal (that is the final configuration of the robot in walking environment), and the output is the joint patterns and ZMP reference patterns. Otherwise, the “Acyclic gait” method is proposed. This method deals with the whole body humanoid robot dynamic step motion from any generic posture to another one when the input is the initial and goal robot states (that is the initial and goal joint angles) and the output is the joint and ZMP reference patterns. Successful simulation and actual results have been obtained with the Rh- 1 humanoid robot developed in the Robotics lab (Universidad Carlos III de Madrid, Spain) and the innovative motion called “Acyclic gait” implemented in the HRP-2 humanoid robot platform (developed by the AIST and Kawada Industries Inc., Japan). Furthermore, the results, contributions and future works will be discussed
    corecore