1,059 research outputs found

    How I met your V2X sensor data : analysis of projection-based light field visualization for vehicle-to-everything communication protocols and use cases

    Get PDF
    The practical usage of V2X communication protocols started emerging in recent years. Data built on sensor information are displayed via onboard units and smart devices. However, perceptually obtaining such data may be counterproductive in terms of visual attention, particularly in the case of safety-related applications. Using the windshield as a display may solve this issue, but switching between 2D information and the 3D reality of traffic may introduce issues of its own. To overcome such difficulties, automotive light field visualization is introduced. In this paper, we investigate the visualization of V2X communication protocols and use cases via projection-based light field technology. Our work is motivated by the abundance of V2X sensor data, the low latency of V2X data transfer, the availability of automotive light field prototypes, the prevalent dominance of non-autonomous and non-remote driving, and the lack of V2X-based light field solutions. As our primary contributions, we provide a comprehensive technological review of light field and V2X communication, a set of recommendations for design and implementation, an extensive discussion and implication analysis, the exploration of utilization based on standardized protocols, and use-case-specific considerations

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Analysis and Design of Algorithms for the Improvement of Non-coherent Massive MIMO based on DMPSK for beyond 5G systems

    Get PDF
    Mención Internacional en el título de doctorNowadays, it is nearly impossible to think of a service that does not rely on wireless communications. By the end of 2022, mobile internet represented a 60% of the total global online traffic. There is an increasing trend both in the number of subscribers and in the traffic handled by each subscriber. Larger data rates, smaller extreme-to-extreme (E2E) delays and greater number of devices are current interests for the development of mobile communications. Furthermore, it is foreseen that these demands should also be fulfilled in scenarios with stringent conditions, such as very fast varying wireless communications channels (either in time or frequency) or scenarios with power constraints, mainly found when the equipment is battery powered. Since most of the wireless communications techniques and standards rely on the fact that the wireless channel is somehow characterized or estimated to be pre or post-compensated in transmission (TX) or reception (RX), there is a clear problem when the channels vary rapidly or the available power is constrained. To estimate the wireless channel and obtain the so-called channel state information (CSI), some of the available resources (either in time, frequency or any other dimension), are utilized by including known signals in the TX and RX typically known as pilots, thus avoiding their use for data transmission. If the channels vary rapidly, they must be estimated many times, which results in a very low data efficiency of the communications link. Also, in case the power is limited or the wireless link distance is large, the resulting signal-tointerference- plus-noise ratio (SINR) will be low, which is a parameter that is directly related to the quality of the channel estimation and the performance of the data reception. This problem is aggravated in massive multiple-input multiple-output (massive MIMO), which is a promising technique for future wireless communications since it can increase the data rates, increase the reliability and cope with a larger number of simultaneous devices. In massive MIMO, the base station (BS) is typically equipped with a large number of antennas that are coordinated. In these scenarios, the channels must be estimated for each antenna (or at least for each user), and thus, the aforementioned problem of channel estimation aggravates. In this context, algorithms and techniques for massive MIMO without CSI are of interest. This thesis main topic is non-coherent massive multiple-input multiple-output (NC-mMIMO) which relies on the use of differential M-ary phase shift keying (DMPSK) and the spatial diversity of the antenna arrays to be able to detect the useful transmitted data without CSI knowledge. On the one hand, hybrid schemes that combine the coherent and non-coherent schemes allowing to get the best of both worlds are proposed. These schemes are based on distributing the resources between non-coherent (NC) and coherent data, utilizing the NC data to estimate the channel without using pilots and use the estimated channel for the coherent data. On the other hand, new constellations and user allocation strategies for the multi-user scenario of NC-mMIMO are proposed. The new constellations are better than the ones in the literature and obtained using artificial intelligence techniques, more concretely evolutionary computation.This work has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie ETN TeamUp5G, grant agreement No. 813391. The PhD student was the Early Stage Researcher (ESR) number 2 of the project. This work has also received funding from the Spanish National Project IRENE-EARTH (PID2020-115323RB-C33) (MINECO/AEI/FEDER, UE), which funded the work of some coauthors.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Luis Castedo Ribas.- Secretario: Matilde Pilar Sánchez Fernández.- Vocal: Eva Lagunas Targaron

    A Survey of Scheduling in 5G URLLC and Outlook for Emerging 6G Systems

    Get PDF
    Future wireless communication is expected to be a paradigm shift from three basic service requirements of 5th Generation (5G) including enhanced Mobile Broadband (eMBB), Ultra Reliable and Low Latency communication (URLLC) and the massive Machine Type Communication (mMTC). Integration of the three heterogeneous services into a single system is a challenging task. The integration includes several design issues including scheduling network resources with various services. Specially, scheduling the URLLC packets with eMBB and mMTC packets need more attention as it is a promising service of 5G and beyond systems. It needs to meet stringent Quality of Service (QoS) requirements and is used in time-critical applications. Thus through understanding of packet scheduling issues in existing system and potential future challenges is necessary. This paper surveys the potential works that addresses the packet scheduling algorithms for 5G and beyond systems in recent years. It provides state of the art review covering three main perspectives such as decentralised, centralised and joint scheduling techniques. The conventional decentralised algorithms are discussed first followed by the centralised algorithms with specific focus on single and multi-connected network perspective. Joint scheduling algorithms are also discussed in details. In order to provide an in-depth understanding of the key scheduling approaches, the performances of some prominent scheduling algorithms are evaluated and analysed. This paper also provides an insight into the potential challenges and future research directions from the scheduling perspective

    Enhanced Mobile Networking using Multi-connectivity and Packet Duplication in Next-Generation Cellular Networks

    Get PDF
    Modern cellular communication systems need to handle an enormous number of users and large amounts of data, including both users as well as system-oriented data. 5G is the fifth-generation mobile network and a new global wireless standard that follows 4G/LTE networks. The uptake of 5G is expected to be faster than any previous cellular generation, with high expectations of its future impact on the global economy. The next-generation 5G networks are designed to be flexible enough to adapt to modern use cases and be highly modular such that operators would have the flexibility to provide selective features based on user demand that could be implemented without investment in additional infrastructure. Thus, the underlying cellular network that is capable of delivering these expectations must be able to handle high data rates with low latency and ultra-reliability to fulfill these growing needs. Communication in the sub-6 GHz range cannot provide high throughputs due to the scarcity of spectrum in these bands. Using frequencies in FR2 or millimeter wave (mmWave) range for communication can provide large data rates and cover densely populated areas, but only over short distances as they are susceptible to blockages. This is why dense deployments of mmWave base stations are being considered to achieve very high data rates. But, such architectures lack the reliability needed to support many V2X applications, especially under mobility scenarios. As we have discussed earlier, 5G and beyond 5G networks must also account for UE\u27s mobility as they are expected to maintain their level of performance under different mobility scenarios and perform better than traditional networks. Although 5G technology has developed significantly in recent years, there still exists a critical gap in understanding how all these technologies would perform under mobility. There is a need to analyze and identify issues that arise with mobility and come up with solutions to overcome these hurdles without compromising the performance of these networks. Multi-connectivity (MC) refers to simultaneous connectivity with multiple radio access technologies or bands and potentially represents an important solution for the ongoing 5G deployments towards improving their performance. To address the network issues that come with mobility and fill that gap, this dissertation investigates the impact of multi-connectivity on next-generation networks from three distinct perspectives, 1) mobility enhancement using multi-connectivity in 5G networks, 2) improving reliability in mobility scenarios using multi-Connectivity with packet duplication, and 3) single grant multiple uplink scheme for performance improvement in mobility scenarios. The traditional macro-cell architecture of cellular networks that cover large geographical areas will struggle to deliver the dense coverage, low latency, and high bandwidth required by some 5G applications. Thus, 5G networks must utilize ultra-dense deployment of access points operating at higher mmWave frequency bands. But, for such dense networks, user mobility could be particularly challenging as it would reduce network efficiency and user-perceived service quality due to frequent handoffs. Multi-connectivity is seen as a key enabler in improving the performance of these next-generation networks. It enhances the system performance by providing multiple simultaneous links between the user equipment (UE) and the base stations (BS) for data transfer. Also, it eliminates the time needed to deal with frequent handoffs, link establishment, etc. Balancing the trade-offs among handoff rate, service delay, and achievable coverage/data rate in heterogeneous, dense, and diverse 5G cellular networks is, therefore, an open challenge. Hence, in this dissertation, we analyze how mobility impacts the performance of current Ultra-dense mmWave network (UDN) architecture in a city environment and discuss improvements for reducing the impact of mobility to meet 5G specifications using multi-connectivity. Current handover protocols, by design, suffer from interruption even if they are successful and, at the same time, carry the risk of failures during execution. The next-generation wireless networks, like 5G New Radio, introduce even stricter requirements that cannot be fulfilled with the traditional hard handover concept. Another expectation from these services is extreme reliability that will not tolerate any mobility-related failures. Thus, in this dissertation, we explore a novel technique using packet duplication and evaluate its performance under various mobility scenarios. We study how packet duplication can be used to meet the stringent reliability and latency requirements of modern cellular networks as data packets are duplicated and transmitted concurrently over two independent links. The idea is to generate multiple instances (duplicates) of a packet and transmit them simultaneously over different uncorrelated channels with the aim of reducing the packet failure probability. We also propose enhancements to the packet duplication feature to improve radio resource utilization. The wide variety of use cases in the 5G greatly differs from the use cases considered during the design of third-generation (3G) and fourth-generation (4G) long-term evolution (LTE) networks. Applications like autonomous driving, IoT applications, live video, etc., are much more uplink intensive as compared to traditional applications. However, the uplink performance is often, by design, lower than the downlink; hence, 5G must improve uplink performance. Hence, to meet the expected performance levels, there is a need to explore flexible network architectures for 5G networks. In this work, we propose a novel uplink scheme where the UE performs only a single transmission on a common channel, and every base station that can receive this signal would accept and process it. In our proposed architecture, a UE is connected to multiple mmWave capable distributed units (DUs), which are connected to a single gNB-central unit. In an ultra-dense deployment with multiple mmWave base stations around the UE, this removes the need to perform frequent handovers and allows high mobility with reduced latency. We develop and evaluate the performance of such a system for high throughput and reliable low latency communication under various mobility scenarios. To study the impact of mobility on next-generation networks, this work develops and systematically analyzes the performance of the 5G networks under mobility. We also look into the effect of increasing the number of users being served on the network. As a result, these studies are intended to understand better the network requirements for handling mobility and network load with multi-connectivity. This dissertation aims to achieve clarity and also proposes solutions for resolving these real-world network mobility issues

    Towards Broadcasting Linear Content Over 5G Network

    Get PDF
    Today's society heavily relies on linear television systems featuring planned programs, which serve as a vital means of communication. The evolution of broadcasting linear content is notably driven by advancements in end users' devices. This transition has expanded it from a limited range of linear radio and TV channels to a comprehensive and distinctive array. This selection is accessible across diverse distribution network types. Among these networks, the prominence of the 5G network stands out as a notable platform for media and transmissions. Transmitting linear content over 5G networks involves efficiently delivering scheduled, real-time content to a large number of users simultaneously. This content encompasses live TV broadcasts, radio programs, and streaming events. While 5G networks offer significant advantages in capacity, speed, and latency, it's essential to consider specific factors when it comes to broadcasting linear content. Traditionally, cellular networks, designed for continuous service, have predominantly followed a unicast bidirectional communication paradigm for numerous years, providing a range of services to customers. This paper employs a research methodology to examine the future 3rd Generation Partnership Project (3GPP) 5G Multicast and Broadcast Services (MBS) standards, along with their constraints. Our approach includes a comprehensive literature review, technical specification analysis, and comparison of different broadcasting technologies within the 5G framework. By employing this research methodology, we gain a holistic understanding of the evolving landscape of broadcasting linear content over 5G networks. This contributes to the body of knowledge in this field and informs future advancements in broadcast technologies within the 5G ecosystem

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Towards Broadcasting Linear Content over 5G Network

    Get PDF
    Today's society relies heavily on linear television systems with planned programs, which are also a crucial form of communication. Broadcast of liner content is evolving, driven particularly by the evolution of end users’ devices, it is has changed from a small number of linear radio and TV channels to a comprehensive and distinctive offer that is available across a variety of various distribution platforms. Broadcasting linear content over 5G networks involves delivering scheduled, real-time content such as live TV broadcasts, radio programs, or streaming events to a large number of users simultaneously. While 5G networks offer significant advantages in terms of capacity, speed, and latency, there are specific considerations when it comes to broadcasting linear content. hassle cellular networks offering the discontinues services, have been predominantly built on a unicast bidirectional communication paradigm for many years, offering its end customers a variety of services. In this paper, we examine the future 3rd Generation Partnership Project (3GPP) 5G Multicast and Broadcast Services (MBS) standards as well as some of its constraints. We also outline the most recent standardization efforts aimed at bringing non-3GPP broadcast networks into the 5G system, along with the suggestions we have made to standards bodies

    Towards Broadcasting Linear Content over 5G Network

    Get PDF
    Today's society relies heavily on linear television systems with planned programs, which are also a crucial form of communication. Broadcast of liner content is evolving, driven particularly by the evolution of end users’ devices, it is has changed from a small number of linear radio and TV channels to a comprehensive and distinctive offer that is available across a variety of various distribution platforms. Broadcasting linear content over 5G networks involves delivering scheduled, real-time content such as live TV broadcasts, radio programs, or streaming events to a large number of users simultaneously. While 5G networks offer significant advantages in terms of capacity, speed, and latency, there are specific considerations when it comes to broadcasting linear content. hassle cellular networks offering the discontinues services, have been predominantly built on a unicast bidirectional communication paradigm for many years, offering its end customers a variety of services. In this paper, we examine the future 3rd Generation Partnership Project (3GPP) 5G Multicast and Broadcast Services (MBS) standards as well as some of its constraints. We also outline the most recent standardization efforts aimed at bringing non-3GPP broadcast networks into the 5G system, along with the suggestions we have made to standards bodies

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance
    • …
    corecore