996 research outputs found

    Small-signal stability analysis of hybrid power system with quasi-oppositional sine cosine algorithm optimized fractional order PID controller

    Get PDF
    This article deals with the frequency instability problem of a hybrid energy power system (HEPS) coordinated with reheat thermal power plant. A stochastic optimization method called a sine-cosine algorithm (SCA) is, initially, applied for optimum tuning of fractional-order proportional-integral-derivative (FOPI-D) controller gains to balance the power generation and load profile. To accelerate the convergence mobility and escape the solutions from the local optimal level, quasi-oppositional based learning (Q-OBL) is integrated with SCA, which results in QOSCA. In this work, the PID-controller's derivative term is placed in the feedback path to avoid the set-point kick problem. A comparative assessment of the energy-storing devices is shown for analyzing the performances of the same in HEPS. The qualitative and quantitative evaluation of the results shows the best performance with the proposed QOSCA: FOPI-D controller compared to SCA-, grey wolf optimizer (GWO), and hyper-spherical search (HSS) optimized FOPI-D controller. It is also seen from the results that the proposed QOSCA: FOPI-D controller has satisfactory disturbance rejection ability and shows robust performance against parametric uncertainties and random load perturbation. The efficacy of the designed controller is confirmed by considering generation rate constraint, governor dead-band, and boiler dynamics effects

    Architecture for intelligent power systems management, optimization, and storage.

    Get PDF
    The management of power and the optimization of systems generating and using power are critical technologies. A new architecture is developed to advance the current state of the art by providing an intelligent and autonomous solution for power systems management. The architecture is two-layered and implements a decentralized approach by defining software objects, similar to software agents, which provide for local optimization of power devices such as power generating, storage, and load devices. These software device objects also provide an interface to a higher level of optimization. This higher level of optimization implements the second layer in a centralized approach by coordinating the individual software device objects with an intelligent expert system thus resulting in architecture for total system power management. In this way, the architecture acquires the benefits of both the decentralized and centralized approaches. The architecture is designed to be portable, scalable, simple, and autonomous, with respect to devices and missions. Metrics for evaluating these characteristics are also defined. Decentralization achieves scalability and simplicity through modularization using software device objects that can be added and deleted as modules based on the devices of the power system are being optimized. Centralization coordinates these software device objects to bring autonomy and intelligence of the whole power system and mission to the architecture. The centralization approach is generic since it always coordinates software device objects; therefore it becomes another modular component of the architecture. Three example implementations illustrate the evolution of this power management system architecture. The first implementation is a coal-fired power generating station that utilized a neural network optimization for the reduction of nitrogen oxide emissions. This illustrates the limitations of this type of black-box optimization and serves as a motivation for developing a more functional architecture. The second implementation is of a hydro-generating power station where a white-box, software agent approach illustrates some of the benefits and provides initial justification of moving towards the proposed architecture. The third implementation applies the architecture to a vehicle to grid application where the previous hydro-generating application is ported and a new hybrid vehicle application is defined. This demonstrates portability and scalability in the architecture, and linking these two applications demonstrates autonomy. The simplicity of building this application is also evaluated

    A Model-Based Coordinated Control Concept for Steam Power Plants

    Get PDF

    Microgrid, Its Control and Stability: The State of The Art

    Get PDF
    Some of the challenges facing the power industries globally include power quality and stability, diminishing fossil fuel, climate change amongst others. The use of distributed generators however is growing at a steady pace to address these challenges. When interconnected and integrated with storage devices and controllable load, these generators operate together in a grid, which has incidental stability and control issues. The focus of this paper, therefore, is on the review and discussion of the different control approaches and the hierarchical control on a microgrid, the current practice in the literature concerning stability and the control techniques deployed for microgrid control; the weakness and strength of the different control strategies were discussed in this work and some of the areas that require further research are highlighted

    A survey on fopid controllers for lfo damping in power systems using synchronous generators, facts devices and inverter-based power plants

    Get PDF
    In recent decades, various types of control techniques have been proposed for use in power systems. Among them, the use of a proportional–integral–derivative (PID) controller is widely recognized as an effective technique. The generalized type of this controller is the fractional-order PID (FOPID) controller. This type of controller provides a wider range of stability area due to the fractional orders of integrals and derivatives. These types of controllers have been significantly considered as a new approach in power engineering that can enhance the operation and stability of power systems. This paper represents a comprehensive overview of the FOPID controller and its applications in modern power systems for enhancing low-frequency oscillation (LFO) damping. In addition, the performance of this type of controller has been evaluated in a benchmark test system. It can be a driver for the development of FOPID controller applications in modern power systems. Investigation of different pieces of research shows that FOPID controllers, as robust controllers, can play an efficient role in modern power systems

    Grid-Connected Distributed Wind-Photovoltaic Energy Management: A Review

    Get PDF
    Energy management comprises of the planning, operation and control of both energy production and its demand. The wind energy availability is site-specific, time-dependent and nondispatchable. As the use of electricity is growing and conventional sources are depleting, the major renewable sources, like wind and photovoltaic (PV), have increased their share in the generation mix. The best possible resource utilization, having a track of load and renewable resource forecast, assures significant reduction of the net cost of the operation. Modular hybrid energy systems with some storage as back up near load center change the scenario of unidirectional power flow to bidirectional with the distributed generation. The performance of such systems can be enhanced by the accomplishment of advanced control schemes in a centralized system controller or distributed control. In grid-connected mode, these can support the grid to tackle power quality issues, which optimize the use of the renewable resource. The chapter aims to bring recent trends with changing requirements due to distributed generation (DG), summarizing the research works done in the last 10 years with some vision of future trends

    Benchmarking of Advanced Control Strategies for a Simulated Hydroelectric System

    Get PDF
    This paper analyses and develops the design of advanced control strategies for a typical hydroelectric plant during unsteady conditions, performed in the Matlab and Simulink environments. The hydraulic system consists of a high water head and a long penstock with upstream and downstream surge tanks, and is equipped with a Francis turbine. The nonlinear characteristics of hydraulic turbine and the inelastic water hammer effects were considered to calculate and simulate the hydraulic transients. With reference to the control solutions addressed in this work, the proposed methodologies rely on data-driven and model-based approaches applied to the system under monitoring. Extensive simulations and comparisons serve to determine the best solution for the development of the most effective, robust and reliable control tool when applied to the considered hydraulic system
    • …
    corecore