3,934 research outputs found

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Get PDF
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV, in prep. for journal submission. In V3, we add a proof that the socially-optimal solution can be enforced as a general equilibrium, a privacy-preserving distributed optimization algorithm, a description of the receding-horizon implementation and additional numerical results, and proofs of all theorem

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Full text link
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV and accepted by TCNS. In Version 4, the body of the paper is largely rewritten for clarity and consistency, and new numerical simulations are presented. All source code is available (MIT) at https://dx.doi.org/10.5281/zenodo.324165

    Demand Side Management of Electric Vehicles in Smart Grids: A survey on strategies, challenges, modeling, and optimization

    Get PDF
    The shift of transportation technology from internal combustion engine (ICE) based vehicles to electricvehicles (EVs) in recent times due to their lower emissions, fuel costs, and greater efficiency hasbrought EV technology to the forefront of the electric power distribution systems due to theirability to interact with the grid through vehicle-to-grid (V2G) infrastructure. The greater adoptionof EVs presents an ideal use-case scenario of EVs acting as power dispatch, storage, and ancillaryservice-providing units. This EV aspect can be utilized more in the current smart grid (SG) scenarioby incorporating demand-side management (DSM) through EV integration. The integration of EVswith DSM techniques is hurdled with various issues and challenges addressed throughout thisliterature review. The various research conducted on EV-DSM programs has been surveyed. This reviewarticle focuses on the issues, solutions, and challenges, with suggestions on modeling the charginginfrastructure to suit DSM applications, and optimization aspects of EV-DSM are addressed separatelyto enhance the EV-DSM operation. Gaps in current research and possible research directions have beendiscussed extensively to present a comprehensive insight into the current status of DSM programsemployed with EV integration. This extensive review of EV-DSM will facilitate all the researchersto initiate research for superior and efficient energy management and EV scheduling strategies andmitigate the issues faced by system uncertainty modeling, variations, and constraints

    Smart charging strategies for electric vehicle charging stations

    Get PDF
    Although the concept of transportation electrification holds enormous prospects in addressing the global environmental pollution problem, consumer concerns over the limited availability of charging stations and long charging/waiting times are major contributors to the slow uptake of plug-in electric vehicles (PEVs) in many countries. To address the consumer concerns, many countries have undertaken projects to deploy a network of both fast and slow charging stations, commonly known as electric vehicle charging networks. While a large electric vehicle charging network will certainly be helpful in addressing PEV owners\u27 concerns, the full potential of this network cannot be realised without the implementation of smart charging strategies. For example, the charging load distribution in an EV charging network would be expected to be skewed towards stations located in hotspot areas, instigating longer queues and waiting times in these areas, particularly during afternoon peak traffic hours. This can also lead to a major challenge for the utilities in the form of an extended PEV charging load period, which could overlap with residential evening peak load hours, increasing peak demand and causing serious issues including network instability and power outages. This thesis presents a smart charging strategy for EV charging networks. The proposed smart charging strategy finds the optimum charging station for a PEV owner to ensure minimum charging time, travel time and charging cost. The problem is modelled as a multi-objective optimisation problem. A metaheuristic solution in the form of ant colony optimisation (ACO) is applied to solve the problem. Considering the influence of pricing on PEV owners\u27 behaviour, the smart charging strategy is then extended to address the charging load imbalance problem in the EV network. A coordinated dynamic pricing model is presented to reduce the load imbalance, which contributes to a reduction in overlaps between residential and charging loads. A constraint optimization problem is formulated and a heuristic solution is introduced to minimize the overlap between the PEV and residential peak load periods. In the last part of this thesis, a smart management strategy for portable charging stations (PCSs) is introduced. It is shown that when smartly managed, PCSs can play an important role in the reduction of waiting times in an EV charging network. A new strategy is proposed for dispatching/allocating PCSs during various hours of the day to reduce waiting times at public charging stations. This also helps to decrease the overlap between the total PEV demand and peak residential load

    Distributed smart charging of electric vehicles for balancing wind energy

    Get PDF
    To meet worldwide goals of reducing CO2 footprint, electricity production increasingly is stemming from so-called renewable sources. To cater for their volatile behavior, so-called demand response algorithms are required. In this paper, we focus particularly on how charging electrical vehicles (EV) can be coordinated to maximize green energy consumption. We present a distributed algorithm that minimizes imbalance costs, and the disutility experienced by consumers. Our approach is very much practical, as it respects privacy, while still obtaining near-optimal solutions, by limiting the information exchanged: i.e. consumers do not share their preferences, deadlines, etc. Coordination is achieved through the exchange of virtual prices associated with energy consumption at certain times. We evaluate our approach in a case study comprising 100 electric vehicles over the course of 4 weeks, where renewable energy is supplied by a small scale wind turbine. Simulation results show that 68% of energy demand can be supplied by wind energy using our distributed algorithm, compared to 73% in a theoretical optimum scenario, and only 40% in an uncoordinated business-as-usual (BAU) scenario. Also, the increased usage of renewable energy sources, i.e. wind power, results in a 45% reduction of CO2 emissions, using our distributed algorithm

    Online optimal variable charge-rate coordination of plug-in electric vehicles to maximize customer satisfaction and improve grid performance

    Get PDF
    © 2016 Elsevier B.V. Participation of plug-in electric vehicles (PEVs) is expected to grow in emerging smart grids. A strategy to overcome potential grid overloading caused by large penetrations of PEVs is to optimize their battery charge-rates to fully explore grid capacity and maximize the customer satisfaction for all PEV owners. This paper proposes an online dynamically optimized algorithm for optimal variable charge-rate scheduling of PEVs based on coordinated aggregated particle swarm optimization (CAPSO). The online algorithm is updated at regular intervals of Δt = 5 min to maximize the customers’ satisfactions for all PEV owners based on their requested plug-out times, requested battery state of charges (SOCReq) and willingness to pay the higher charging energy prices. The algorithm also ensures that the distribution transformer is not overloaded while grid losses and node voltage deviations are minimized. Simulation results for uncoordinated PEV charging as well as CAPSO with fixed charge-rate coordination (FCC) and variable charge-rate coordination (VCC) strategies are compared for a 449-node network with different levels of PEV penetrations. The key contributions are optimal VCC of PEVs considering battery modeling, chargers’ efficiencies and customer satisfaction based on requested plug-out times, driving pattern, desired final SOCs and their interest to pay for energy at a higher rate

    An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †

    Get PDF
    The design and implementation of management policies for plug-in electric vehicles (PEVs) need to be supported by a holistic understanding of the functional processes, their complex interactions, and their response to various changes. Models developed to represent different functional processes and systems are seen as useful tools to support the related studies for different stakeholders in a tangible way. This paper presents an overview of modeling approaches applied to support aggregation-based management and integration of PEVs from the perspective of fleet operators and grid operators, respectively. We start by explaining a structured modeling approach, i.e., a flexible combination of process models and system models, applied to different management and integration studies. A state-of-the-art overview of modeling approaches applied to represent several key processes, such as charging management, and key systems, such as the PEV fleet, is then presented, along with a detailed description of different approaches. Finally, we discuss several considerations that need to be well understood during the modeling process in order to assist modelers and model users in the appropriate decisions of using existing, or developing their own, solutions for further applications
    • …
    corecore