17 research outputs found

    VAr Compensation Based Stability Enhancement Of Wind Turbine Using STATCOM

    Full text link
    Maintenance of power system stability becomes vital during disturbances like faults, contingency etc. This work deals with a novel priority oriented optimal reactive power compensation of Doubly-Fed Induction Generator (DFIG) based wind turbine using Static Synchronous Compensator (STATCOM). A multi-objective problem will be formulated to maintain voltage within its tolerance levels using Voltage Severity Index (VSI) and to mitigate low frequency oscillations by using Transient Power Severity Index (TPSI) during post-fault conditions. An optimal solution to this proposed problem will be obtained using Fuzzy Logic. In order to justify the proposed methodology it is simulated and tested using 2 MW DFIG with MATLAB- Simulink.nbs

    The Application of Ant Colonies Algorithm in Optimal Positioning Wind Turbine Farms

    Get PDF
    Reduction of fossil fuel resources has made wind energy as one of the most prolific alternative energies in the world. Therefore, the design and operation of the wind turbine farms in many countries has become a priority. The place of installation of the wind turbines is one of the most important issues related to the design of these farms. Therefore, the characteristics of the relevant environmental and other restrictions that are usually linked to a couple of variables in the design of these sites are being considered. In this paper a new method based on Ant Colony algorithm for optimal positioning installation of wind turbine farms in the electrical distribution networks is provided. And the performance of the proposed method is tested and reviewed

    The Application of Ant Colonies Algorithm in Optimal Positioning Wind Turbine Farms

    Get PDF
    Reduction of fossil fuel resources has made wind energy as one of the most prolific alternative energies in the world. Therefore, the design and operation of the wind turbine farms in many countries has become a priority. The place of installation of the wind turbines is one of the most important issues related to the design of these farms. Therefore, the characteristics of the relevant environmental and other restrictions that are usually linked to a couple of variables in the design of these sites are being considered. In this paper a new method based on Ant Colony algorithm for optimal positioning installation of wind turbine farms in the electrical distribution networks is provided. And the performance of the proposed method is tested and reviewed

    Novel Bacteria Foraging Optimization for Energy-efficient Communication in Wireless Sensor Network

    Get PDF
    Optimization techniques based on Swarm-intelligence has been reported to have significant benefits towards addressing communication issues in Wireless Sensor Network (WSN). We reviewed the most dominant swarm intelligence technique called as Bacteria Foraging Optimization (BFO) to find that there are very less significant model towards addressing the problems in WSN. Therefore, the proposed paper introduced a novel BFO algorithm which maintains a very good balance between the computational and communication demands of a sensor node unlike the conventional BFO algorithms. The significant contribution of the proposed study is to minimize the iterative steps and inclusion of minimization of both receiving / transmittance power in entire data aggregation process. The study outcome when compared with standard energy-efficient algorithm was found to offer superior network lifetime in terms of higher residual energy as well as data transmission performance

    New contributions to frequency control based on virtual synchronous generators: application to power systems with high renewable energy sources integration

    Get PDF
    [SPA] Esta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones. Tradicionalmente, servicios como la regulación y mantenimiento de la frecuencia de los sistemas eléctricos, cobertura de la demanda eléctrica o la existencia de las reservas rodantes (spinning reserves) han sido suministrados y asegurados por las fuentes de generación de energía eléctrica tradicionales. Sin embargo, los sistemas eléctricos han sufrido una serie de cambios en los últimos años que están afectando de manera directa al propio funcionamiento de los mismos. Por un lado, el aumento constante del consumo de energía y de la intensidad del propio uso energético, unido al aumento de las restricciones legislativas medioambientales, y por otro el concepto de la energía eléctrica como un producto comercial junto con la liberalización de los mercados energéticos, hacen que se tambaleen algunas de las premisas hasta ahora asumidas. En este sentido, y en un entorno de promoción de recursos renovables, hace que los servicios hasta ahora proporcionados sólo por la generación clásica deben también ser compartidos por todos los puntos de generación. No obstante, la alta penetración de este tipo de fuentes renovables en el sector eléctrico acarrea una seria de cuestiones derivadas de sus características y peculiaridades que es necesario abordar antes de proceder de manera masiva a su integración y, por tanto, a la independencia de la generación convencional. Adicionalmente, y debido a la naturaleza variable de la generación renovable (principalmente el viento y el sol) recobra mayor importancia el asegurar por parte de los organismos reguladores una reserva energética que permita actuar de manera eficiente y fiel en casos de desequilibrio de potencias. En este nuevo escenario, en el que el director de tesis ha trabajado a lo largo de la última década, se hace necesario contar con el desarrollo y adaptación de nuevas herramientas y soluciones que faciliten la integración de fuentes renovables sin que ello suponga una merma en las capacidades del sistema eléctrico en términos de estabilidad y de respuesta ante contingencias. Así pues, el objetivo principal de esta tesis consiste en el estudio, implementación y evaluación de sistemas eléctricos con alta penetración de recurso eólico y fotovoltaico con el fin de evaluar posibles soluciones para emular inercias virtuales y respuestas similares a las que se obtendrían con generación clásica, integrando así de manera efectiva el recurso renovable al control de la frecuencia del sistema eléctrico. En este escenario, resultaría crucial poder aliviar en parte las necesidades de almacenamiento de energía a los puntos de generación mediante la implementación de estrategias alternativas de control de respuesta ante excursiones de frecuencia en las unidades renovables, aportando éstas el apoyo necesario para mantener la frecuencia de red dentro de los límites establecidos. Por tanto, la solución aquí estudiada favorecería la integración masiva de recursos renovables, dentro de un escenario de estabilidad del sistema eléctrico apoyado por estas instalaciones, y donde la eliminación paulatina de elementos rotativos directamente conectados a la red debe sustituirse y/o emularse de manera que el sistema eléctrico ofrezca la misma fiabilidad que se percibe ante la presencia de generación convencional. Sólo así se conseguirá fomentar de manera argumentada las posibilidades tangibles de integración a gran escala de recursos renovables, adelantándonos a las necesidades que surgirán de manera inevitable como consecuencia de la disminución inicial de inercia del sistema (entendida de una manera clásica como elementos rotativos directamente conectados a red) y como consecuencia de la entrada de fuentes que poseen una variabilidad en sus niveles de generación. Destacar igualmente la importancia cada vez mayor del control de la frecuencia del sistema eléctrico, debido a la sensibilidad y dependencia que poseen de este parámetro la mayoría de las cargas y equipos con algún tipo de etapa de electrónica de potencia.[ENG] This doctoral dissertation has been presented in the form of thesis by publication. Over the last decades, most countries have been suffering an electrical energy transition, changing from a model based on non-renewable sources (mainly based on fossil fuels), to a new framework characterised by the integration of renewable energy resources (RES). These important changes have been mainly supported by the development of power electronics, environmental protection policies, and the need to reduce energy dependence on third countries. Moreover, the electrical sector stands out because of the diversity and heterogeneity of sources that can generate electricity. As a result, the current electrical scenario includes a high interest in the integration of variable renewable energy sources (vRES) shifting towards a new generation mix. In fact, these vRES (mainly photovoltaic and wind power installations) already play a relevant role, as some European countries have experienced generation levels over 50% during some time-periods of last years. As aforementioned, the two most mature renewable resources integrated into power systems are solar photovoltaic (PV) and wind power (especially variable speed wind turbines, VSWTs). Together with the integration of these two sources, and in contrast to traditional grids based on conventional power plants (i.e., hydro-power, thermal, and nuclear power plants), several important issues have emerged, needing to be analysed, assessed, and resolved.Los artículos que constituyen la tesis son los siguientes: 1. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C). 2. Ana Fernández-Guillamón & Jorge Villena-Lapaz & Antonio Vigueras-Rodríguez & Tania García-Sánchez & Ángel Molina-García, 2018. "An Adaptive Frequency Strategy for Variable Speed Wind Turbines: Application to High Wind Integration Into Power Systems,"Energies, MDPI, Open Access Journal, vol. 11(6), pages 1-21, June. 3. Fernández-Guillamón, A.; Vigueras-Rodríguez, A.; Gómez-Lázaro, E.; Molina-García, Á. Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems. Energies 2018, 11, 2775. https://doi.org/10.3390/en11102775. 4. Fernández-Guillamón, Ana & Sarasúa, José & Chazarra, Manuel & Vigueras-Rodríguez, Antonio & Fernández-Muñoz, Daniel & Molina-Garcia, Ángel. (2020). Frequency control analysis based on unit commitment schemes with high wind power integration: A Spanish isolated power system case study. International Journal of Electrical Power & Energy Systems. 121. 106044. 10.1016/j.ijepes.2020.106044. 5. Fernández‐Guillamón, A., Vigueras‐Rodríguez, A. and Molina‐García, Á. (2019), Analysis of power system inertia estimation in high wind power plant integration scenarios. IET Renewable Power Generation, 13: 2807-2816. https://doi.org/10.1049/iet-rpg.2019.0220. 6. Fernández Guillamón, Ana; Martínez de Lucas, Guillermo; Molina García, Ángel y Sarasúa Moreno, José Ignacio (2020). An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation."Energies", v. 13 (n. 13); p. 3369. ISSN 1996-1073. https://doi.org/10.3390/en13133369. 7. Fernández-Guillamón, A.; Martínez-Lucas, G.; Molina-García, Á.; Sarasua, J.-I. Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems. Sustainability 2020, 12, 7750. https://doi.org/10.3390/su12187750. 8. Fernández-Guillamón, Ana & Gomez-Lazaro, Emilio & Molina-Garcia, Ángel. (2020). Extensive frequency response and inertia analysis under high renewable energy source integration scenarios: application to the European interconnected power system.Escuela Internacional de Doctorado de la Universidad Politécnica de CartagenaUniversidad Politécnica de CartagenaPrograma de Doctorado en Energías Renovables y Eficiencia Energétic

    PID CONTROLLER TUNING OF 3-PHASE SEPARATOR IN OIL & GAS INDUSTRY USING BACTERIA FORAGING OPTIMIZATION ALGORITHM

    Get PDF
    In oil and gas industry, one of the most important stages in processing petroleum is separation. It can be classified by operating configuration such as vertical, horizontal and spherical or by its function which is 2-phase or 3-phase. In this paper, vertical 3-phase separator will be chosen and researched. 3-phase separator is used to separate water, oil and gas. Gas will be at the top, oil will be the middle layer and water will be at the bottom due to gravitational force and the density of the substance. The objective is to tune the PID controller controlling the level of the water in the separator. Outflow rate of the water from the bottom of the separator will be used to control the water level. Currently there are controlling methods namely PI control using trial and error method, PI control using Butterworth filter design method and IMC method. These methods were having quite high % overshoot and long settling time. So, this paper will introduce Bacterial Foraging Optimization Algorithm (BFOA) in optimizing the parameters for PI control. BFOA mimics the behaviour of the bacteria in searching for highest food concentration which then modified to search the best parameters for the PID controller. BFOA will be able to find the best parameters compared with the conventional methods and show better performance than PI control using trial and error method, PI control using Butterworth filter design method or IMC method. BFOA will be studied and other existing conventional methods as well. Simulation will be done based on the mathematical model of the 3-phase separator

    Analysis and Modeling of Advanced Power Control and Protection Requirements for Integrating Renewable Energy Sources in Smart Grid,

    Get PDF
    Attempts to reduce greenhouse gas emissions are promising with the recent dramatic increase of installed renewable energy sources (RES) capacity. Integration of large intermittent renewable resources affects smart grid systems in several significant ways, such as transient and voltage stability, existing protection scheme, and power leveling and energy balancing. To protect the grid from threats related to these issues, utilities impose rigorous technical requirements, more importantly, focusing on fault ride through requirements and active/reactive power responses following disturbances. This dissertation is aimed at developing and verifying the advanced and algorithmic methods for specification of protection schemes, reactive power capability and power control requirements for interconnection of the RESs to the smart grid systems. The first findings of this dissertation verified that the integration of large RESs become more promising from the energy-saving, and downsizing perspective by introducing a resistive superconducting fault current limiter (SFCL) as a self-healing equipment. The proposed SFCL decreased the activation of the conventional control scheme for the wind power plant (WPP), such as dc braking chopper and fast pitch angle control systems, thereby increased the reliability of the system. A static synchronous compensator (STATCOM) has been proposed to assist with the uninterrupted operation of the doubly-fed induction generators (DFIGs)-based WTs during grid disturbances. The key motivation of this study was to design a new computational intelligence technique based on a multi-objective optimization problem (MOP), for the online coordinated reactive power control between the DFIG and the STATCOM in order to improve the low voltage ride-through (LVRT) capability of the WT during the fault, and to smooth low-frequency oscillations of the active power during the recovery. Furthermore, the application of a three-phase single-stage module-integrated converter (MIC) incorporated into a grid-tied photovoltaic (PV) system was investigated in this dissertation. A new current control scheme based on multivariable PI controller, with a faster dynamic and superior axis decoupling capability compared with the conventional PI control method, was developed and experimentally evaluated for three-phase PV MIC system. Finally, a study was conducted based on the framework of stochastic game theory to enable a power system to dynamically survive concurrent severe multi-failure events, before such failures turn into a full blown cascading failure. This effort provides reliable strategies in the form of insightful guidelines on how to deploy limited budgets for protecting critical components of the smart grid systems

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area

    Load frequency control for multi-area interconnected power system using artificial intelligent controllers

    Get PDF
    Power system control and stability have been an area with different and continuous challenges in order to reach the desired operation that satisfies consumers and suppliers. To accomplish the purpose of stable operation in power systems, different loops have been equipped to control different parameters. For example, Load Frequency Control (LFC) is introduced to maintain the frequency at or near its nominal values, this loop is also responsible for maintaining the interchanged power between control areas interconnected via tie-lines at scheduled values. Other loops are also employed within power systems such as the Automatic Voltage Regulator (AVR). This thesis focuses on the problem of frequency deviation in power systems and proposes different solutions based on different theories. The proposed methods are implemented in two different power systems namely: unequal two-area interconnected thermal power system and the simplified Great Britain (GB) power system. Artificial intelligence-based controllers have recently dominated the field of control engineering as they are practicable with relatively low solution costs, this is in addition to providing a stable, reliable and robust dynamic performance of the controlled plant. They professionally can handle different technical issues resulting from nonlinearities and uncertainties. In order to achieve the best possible control and dynamic system behaviour, a soft computing technique based on the Bees Algorithm (BA) is suggested for tuning the parameters of the proposed controllers for LFC purposes. Fuzzy PID controller with filtered derivative action (Fuzzy PIDF) optimized by the BA is designed and implemented to improve the frequency performance in the two different systems under study during and after load disturbance. Further, three different fuzzy control configurations that offer higher reliability, namely Fuzzy Cascade PI − PD, Fuzzy PI plus Fuzzy PD, and Fuzzy (PI + PD), optimized by the BA have also been implemented in the two-area interconnected power system. The robustness of these fuzzy configurations has been evidenced against parametric uncertainties of the controlled power systems Sliding Mode Control (SMC) design, modelling and implementation have also been conducted for LFC in the investigated systems where the parameters are tuned by the BA. The mathematical model design of the SMC is derived based on the parameters of the testbed systems. The robustness analysis of the proposed SMC against the controlled systems’ parametric uncertainties has been carried out considering different scenarios. Furthermore, to authenticate the excellence of the proposed controllers, a comparative study is carried out based on the obtained results and those from previously introduced works based on classical PID tuned by the Losi Map-Based Chaotic Optimization Algorithm (LCOA), Fuzzy PID Optimized by Teaching Learning-Based Optimization (TLBO
    corecore