39,685 research outputs found

    A Response-Function-Based Coordination Method for Transmission-Distribution-Coupled AC OPF

    Full text link
    With distributed generation highly integrated into the grid, the transmission-distribution-coupled AC OPF (TDOPF) becomes increasingly important. This paper proposes a response-function-based coordination method to solve the TDOPF. Different from typical decomposition methods, this method employs approximate response functions of the power injections with respect to the bus voltage magnitude in the transmission-distribution (T-D) interface to reflect the "reaction" of the distribution to the transmission system control. By using the response functions, only one or two iterations between the transmission system operator (TSO) and the distribution system operator(s) (DSO(s)) are required to attain a nearly optimal TDOPF solution. Numerical tests confirm that, relative to a typical decomposition method, the proposed method does not only enjoy a cheaper computational cost but is workable even when the objectives of the TSO and the DSO(s) are in distinct scales.Comment: This paper will appear at 2018 IEEE PES Transmission and Distribution Conference and Expositio

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de EconomĂ­a y Competitividad ENE2017-84813-RUniĂłn Europea (Programa Horizonte 2020) 76409

    Merchant Electricity Transmission Expansion: A European Case Study

    Get PDF
    We apply a merchant transmission model to the trilateral market coupling (TLC) arrangement among the Netherlands, Belgium and France as a generic example, and note that it can be applied to any general market splitting or coupling of Europe's different national power markets. In this merchant framework; the system operator allocates financial transmission rights (FTRs) to investors in transmission expansion based upon their preferences, and revenue adequacy. The independent system operator (ISO) preserves some proxy FTRs to deal with potential negative externalities due to an expansion project. This scheme proves to be capable in providing incentives for investment in transmission expansion projects within TLC areas.transmission expansion, trilateral market coupling, Europe, financial transmission rights, congestion management

    Control of multi-terminal HVDC networks towards wind power integration: A review

    Get PDF
    © 2015 Elsevier Ltd. More interconnections among countries and synchronous areas are foreseen in order to fulfil the EU 2050 target on the renewable generation share. One proposal to accomplish this challenging objective is the development of the so-called European SuperGrid. Multi-terminal HVDC networks are emerging as the most promising technologies to develop such a concept. Moreover, multi-terminal HVDC grids are based on highly controllable devices, which may allow not only transmitting power, but also supporting the AC grids to ensure a secure and stable operation. This paper aims to present an overview of different control schemes for multi-terminal HVDC grids, including the control of the power converters and the controls for power sharing and the provision of ancillary services. This paper also analyses the proposed modifications of the existing control schemes to manage high participation shares of wind power generation in multi-terminal grids.Postprint (author's final draft

    Smart Grid for the Smart City

    Get PDF
    Modern cities are embracing cutting-edge technologies to improve the services they offer to the citizens from traffic control to the reduction of greenhouse gases and energy provisioning. In this chapter, we look at the energy sector advocating how Information and Communication Technologies (ICT) and signal processing techniques can be integrated into next generation power grids for an increased effectiveness in terms of: electrical stability, distribution, improved communication security, energy production, and utilization. In particular, we deliberate about the use of these techniques within new demand response paradigms, where communities of prosumers (e.g., households, generating part of their electricity consumption) contribute to the satisfaction of the energy demand through load balancing and peak shaving. Our discussion also covers the use of big data analytics for demand response and serious games as a tool to promote energy-efficient behaviors from end users
    • …
    corecore