575 research outputs found

    Optimizing Coordinated Vehicle Platooning: An Analytical Approach Based on Stochastic Dynamic Programming

    Full text link
    Platooning connected and autonomous vehicles (CAVs) can improve traffic and fuel efficiency. However, scalable platooning operations require junction-level coordination, which has not been well studied. In this paper, we study the coordination of vehicle platooning at highway junctions. We consider a setting where CAVs randomly arrive at a highway junction according to a general renewal process. When a CAV approaches the junction, a system operator determines whether the CAV will merge into the platoon ahead according to the positions and speeds of the CAV and the platoon. We formulate a Markov decision process to minimize the discounted cumulative travel cost, i.e. fuel consumption plus travel delay, over an infinite time horizon. We show that the optimal policy is threshold-based: the CAV will merge with the platoon if and only if the difference between the CAV's and the platoon's predicted times of arrival at the junction is less than a constant threshold. We also propose two ready-to-implement algorithms to derive the optimal policy. Comparison with the classical value iteration algorithm implies that our approach explicitly incorporating the characteristics of the optimal policy is significantly more efficient in terms of computation. Importantly, we show that the optimal policy under Poisson arrivals can be obtained by solving a system of integral equations. We also validate our results in simulation with Real-time Strategy (RTS) using real traffic data. The simulation results indicate that the proposed method yields better performance compared with the conventional method

    Planning of Truck Platoons: a Literature Review and Directions for Future Research

    Get PDF
    A truck platoon is a set of virtually linked trucks that drive closely behind one another using automated driving technology. Benefits of truck platooning include cost savings, reduced emissions, and more efficient utilization of road capacity. To fully reap these benefits in the initial phases requires careful planning of platoons based on trucks’ itineraries and time schedules. This paper provides a framework to classify various new transportation planning problems that arise in truck platooning, surveys relevant operations research models for these problems in the literature and identifies directions for future research

    Designing and Scheduling Cost-Efficient Tours by Using the Concept of Truck Platooning

    Get PDF
    Truck Platooning is a promising new technology to reduce the fuel consumption by around 15% via the exploitation of a preceding and digitally connected truck’s slipstream. However, the cost-efficient coordination of such platoons under consideration of mandatory EU driving time restrictions turns out to be a highly complex task. For this purpose, we provide a comprehensive literature review and formulate the exact EU-Truck Platooning Problem (EU-TPP) as an Integer Linear Program (ILP) which also features a hypothetical task-relieving effect for following drivers in a convoy. In order to increase the computational efficiency, we introduce an auxiliary constraint and two hierarchical planning-based matheuristic approaches: the Shortest Path Heuristic (SPH) and the Platoon Routing Heuristic (PRH). Besides a qualitative sensitivity analysis, we perform an extensive numerical study to investigate the impact of different critical influence factors on platooning, being of major political and economic interest. Our experiments with the EU-TPP suggest remarkable fuel cost savings of up to 10.83% without a 50% task relief, while its inclusion leads to additional personnel cost savings of up to even 31.86% at best with maximally 12 trucks to be coordinated in a recreated part of the European highway network. Moreover, we prove our matheuristics’ highly favorable character in terms of solution quality and processing time. Keywords: autonomous transport; Truck Platooning; driving time and rest periods; cost-efficient routing & scheduling; computational efficiency

    Fully automated urban traffic system

    Get PDF
    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible

    Distributed, decentralised and compensational mechanisms for platoon formation

    Get PDF
    Verkehrsprobleme nehmen mit der weltweiten Urbanisierung und der Zunahme der Anzahl der Fahrzeuge pro Kopf zu. Platoons, eine Formation von eng hintereinander fahrenden Fahrzeugen, stellen sich als mögliche Lösung dar, da bestehende Forschungen darauf hinweisen, dass sie zu einer besseren Straßenauslastung beitragen, den Kraftstoffverbrauch und die Emissionen reduzieren und Engpässe schneller entlasten können. Rund um das Thema Platooning gibt es viele Aspekte zu erforschen: Sicherheit, Stabilität, Kommunikation, Steuerung und Betrieb, die allesamt notwendig sind, um den Einsatz von Platooning im Alltagsverkehr näher zu bringen. Während in allen genannten Bereichen bereits umfangreiche Forschungen durchgeführt wurden, gibt es bisher nur wenige Arbeiten, die sich mit der logischen Gruppierung von Fahrzeugen in Platoons beschäftigen. Daher befasst sich diese Arbeit mit dem noch wenig erforschten Problem der Platoonbildung, wobei sich die vorhandenen Beispiele mit auf Autobahnen fahrenden Lastkraftwagen beschäftigen. Diese Fälle befinden sich auf der strategischen und taktischen Ebene der Planung, da sie von einem großen Zeithorizont profitieren und die Gruppierung entsprechend optimiert werden kann. Die hier vorgestellten Ansätze befinden sich hingegen auf der operativen Ebene, indem Fahrzeuge aufgrund der verteilten und dezentralen Natur dieser Ansätze spontan und organisch gruppiert und gesteuert werden. Dadurch entstehen sogenannte opportunistische Platoons, die aufgrund ihrer Flexibilität eine vielversprechende Voraussetzung für alle Netzwerkarte bieten könnten. Insofern werden in dieser Arbeit zwei neuartige Algorithmen zur Bildung von Platoons vorgestellt: ein verteilter Ansatz, der von klassischen Routing-Problemen abgeleitet wurde, und ein ergänzender dezentraler kompensatorischer Ansatz. Letzteres nutzt automatisierte Verhandlungen, um es den Fahrzeugen zu erleichtern, sich auf der Basis eines monetären Austausches in einem Platoon zu organisieren. In Anbetracht der Tatsache, dass alle Verkehrsteilnehmer über eine Reihe von Präferenzen, Einschränkungen und Zielen verfügen, muss das vorgeschlagene System sicherstellen, dass jede angebotene Lösung für die einzelnen Fahrzeuge akzeptabel und vorteilhaft ist und den möglichen Aufwand, die Kosten und die Opfer überwiegt. Dies wird erreicht, indem den Platooning-Fahrzeugen eine Form von Anreiz geboten wird, im Sinne von entweder Kostensenkung oder Ampelpriorisierung. Um die vorgeschlagenen Algorithmen zu testen, wurde eine Verkehrssimulation unter Verwendung realer Netzwerke mit realistischer Verkehrsnachfrage entwickelt. Die Verkehrsteilnehmer wurden in Agenten umgewandelt und mit der notwendigen Funktionalität ausgestattet, um Platoons zu bilden und innerhalb dieser zu operieren. Die Anwendbarkeit und Eignung beider Ansätze wurde zusammen mit verschiedenen anderen Aspekten untersucht, die den Betrieb von Platoons betreffen, wie Größe, Verkehrszustand, Netzwerkpositionierung und Anreizmethoden. Die Ergebnisse zeigen, dass die vorgeschlagenen Mechanismen die Bildung von spontanen Platoons ermöglichen. Darüber hinaus profitierten die teilnehmenden Fahrzeuge mit dem auf verteilter Optimierung basierenden Ansatz und unter Verwendung kostensenkender Anreize unabhängig von der Platoon-Größe, dem Verkehrszustand und der Positionierung, mit Nutzenverbesserungen von 20% bis über 50% im Vergleich zur untersuchten Baseline. Bei zeitbasierten Anreizen waren die Ergebnisse uneinheitlich, wobei sich der Nutzen einiger Fahrzeuge verbesserte, bei einigen keine Veränderung eintrat und bei anderen eine Verschlechterung zu verzeichnen war. Daher wird die Verwendung solcher Anreize aufgrund ihrer mangelnden Pareto-Effizienz nicht empfohlen. Der kompensatorische und vollständig dezentralisierte Ansatz weißt einige Vorteile auf, aber die daraus resultierende Verbesserung war insgesamt vernachlässigbar. Die vorgestellten Mechanismen stellen einen neuartigen Ansatz zur Bildung von Platoons dar und geben einen aussagekräftigen Einblick in die Mechanik und Anwendbarkeit von Platoons. Dies schafft die Voraussetzungen für zukünftige Erweiterungen in der Planung, Konzeption und Implementierung effektiverer Infrastrukturen und Verkehrssysteme.Traffic problems have been on the rise corresponding with the increase in worldwide urbanisation and the number of vehicles per capita. Platoons, which are a formation of vehicles travelling close together, present themselves as a possible solution, as existing research indicates that they can contribute to better road usage, reduce fuel consumption and emissions and decongest bottlenecks faster. There are many aspects to be explored pertaining to the topic of platooning: safety, stability, communication, controllers and operations, all of which are necessary to bring platoons closer to use in everyday traffic. While extensive research has already made substantial strides in all the aforementioned fields, there is so far little work on the logical grouping of vehicles in platoons. Therefore, this work addresses the platoon formation problem, which has not been heavily researched, with existing examples being focused on large, freight vehicles travelling on highways. These cases find themselves on the strategic and tactical level of planning since they benefit from a large time horizon and the grouping can be optimised accordingly. The approaches presented here, however, are on the operational level, grouping and routing vehicles spontaneously and organically thanks to their distributed and decentralised nature. This creates so-called opportunistic platoons which could provide a promising premise for all networks given their flexibility. To this extent, this thesis presents two novel platoon forming algorithms: a distributed approach derived from classical routing problems, and a supplementary decentralised compensational approach. The latter uses automated negotiation to facilitate vehicles organising themselves in a platoon based on monetary exchanges. Considering that all traffic participants have a set of preferences, limitations and goals, the proposed system must ensure that any solution provided is acceptable and beneficial for the individual vehicles, outweighing any potential effort, cost and sacrifices. This is achieved by offering platooning vehicles some form of incentivisation, either cost reductions or traffic light prioritisation. To test the proposed algorithms, a traffic simulation was developed using real networks with realistic traffic demand. The traffic participants were transformed into agents and given the necessary functionality to build platoons and operate within them. The applicability and suitability of both approaches were investigated along with several other aspects pertaining to platoon operations such as size, traffic state, network positioning and incentivisation methods. The results indicate that the mechanisms proposed allow for spontaneous platoons to be created. Moreover, with the distributed optimisation-based approach and using cost-reducing incentives, participating vehicles benefited regardless of the platoon size, traffic state and positioning, with utility improvements ranging from 20% to over 50% compared to the studied baseline. For time-based incentives the results were mixed, with the utility of some vehicles improving, some seeing no change and for others, deteriorating. Therefore, the usage of such incentives would not be recommended due to their lack of Pareto-efficiency. The compensational and completely decentralised approach shows some benefits, but the resulting improvement was overall negligible. The presented mechanisms are a novel approach to platoon formation and provide meaningful insight into the mechanics and applicability of platoons. This sets the stage for future expansions into planning, designing and implementing more effective infrastructures and traffic systems

    The state of the art of cooperative and connected autonomous vehicles from the future mobility management perspective:a systematic review

    Get PDF
    © 2022 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/futuretransp2030032Cooperative and connected autonomous vehicles (CCAVs) are considered to be a promising solution for addressing congestion and other operational deficiencies, as part of a holistic future mobility management framework. As a result, a significant number of studies have recently been published on this topic. From the perspective of future mobility management, this review paper discusses three themes, which are traffic management, network performance, and mobility management, including congestion, and incident detection using the PRISMA methodology. Three databases were considered for this study, and peer-reviewed primary studies were selected that were published within the last 10 years in the English language, focusing on CCAV in the context of the future transportation and mobility management perspective. For synthesis and interpretation, like-for-like comparisons were made among studies; it was found that extensive research-supported information is required to ensure a smooth transition from conventional vehicles to the CCAVs regime, to achieve the projected traffic and environmental benefits. Research investigations are ongoing to optimize these benefits and associated goals via the setting of different models and simulations. The tools and technologies for the testing and simulation of CCAV were found to have limited capacity. Following the review of the current state-of-the-art, recommendations for future research have been discussed. The most notable is the need for large-scale simulations to understand the impact of CCAVs beyond corridor-based and small-scale networks, the need for understanding the interactions between the drivers of CCAVs and traffic management centers, and the need to assess the technological transition, as far as infrastructure systems are concerned, that is necessary for the progressive penetration of CCAVs into traffic streams.This research was funded by European Union’s Horizon 2020 research and innovation program, grant number 955317.Published onlin

    Facilitating Cooperative Truck Platooning for Energy Savings: Path Planning, Platoon Formation and Benefit Redistribution

    Full text link
    Enabled by the connected and automated vehicle (CAV) technology, cooperative truck platooning that offers promising energy savings is likely to be implemented soon. However, as the trucking industry operates in a highly granular manner so that the trucks usually vary in their operation schedules, vehicle types and configurations, it is inevitable that 1) the spontaneous platooning over a spatial network is rare, 2) the total fuel savings vary from platoon to platoon, and 3) the benefit achieved within a platoon differs from position to position, e.g., the lead vehicle always achieves the least fuel-saving. Consequently, trucks from different owners may not have the opportunities to platoon with others if no path coordination is performed. Even if they happen to do so, they may tend to change positions in the formed platoons to achieve greater benefits, yielding behaviorally unstable platoons with less energy savings and more disruptions to traffic flows. This thesis proposes a hierarchical modeling framework to explicate the necessitated strategies that facilitate cooperative truck platooning. An empirical study is first conducted to scrutinize the energy-saving potentials of the U.S. national freight network. By comparing the performance under scheduled platooning and ad-hoc platooning, the author shows that the platooning opportunities can be greatly improved by careful path planning, thereby yielding substantial energy savings. For trucks assembled on the same path and can to platoon together, the second part of the thesis investigates the optimal platoon formation that maximizes total platooning utility and benefits redistribution mechanisms that address the behavioral instability issue. Both centralized and decentralized approaches are proposed. In particular, the decentralized approach employs a dynamic process where individual trucks or formed platoons are assumed to act as rational agents. The agents decide whether to form a larger, better platoon considering their own utilities under the pre-defined benefit reallocation mechanisms. Depending on whether the trucks are single-brand or multi-brand, whether there is a complete information setting or incomplete information setting, three mechanisms, auction, bilateral trade model, and one-sided matching are proposed. The centralized approach yields a near-optimal solution for the whole system and is more computationally efficient than conventional algorithms. The decentralized approach is stable, more flexible, and computational efficient while maintaining acceptable degrees of optimality. The mechanisms proposed can apply to not only under the truck platooning scenario but also other forms of shared mobility.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163047/1/xtsun_1.pd
    • …
    corecore