456 research outputs found

    Towards Efficient Delivery of Dynamic Web Content

    Get PDF
    Advantages of cache cooperation on edge cache networks serving dynamic web content were studied. Design of cooperative edge cache grid a large-scale cooperative edge cache network for delivering highly dynamic web content with varying server update frequencies was presented. A cache clouds-based architecture was proposed to promote low-cost cache cooperation in cooperative edge cache grid. An Internet landmarks-based scheme, called selective landmarks-based server-distance sensitive clustering scheme, for grouping edge caches into cooperative clouds was presented. Dynamic hashing technique for efficient, load-balanced, and reliable documents lookups and updates was presented. Utility-based scheme for cooperative document placement in cache clouds was proposed. The proposed architecture and techniques were evaluated through trace-based simulations using both real-world and synthetic traces. Results showed that the proposed techniques provide significant performance benefits. A framework for automatically detecting cache-effective fragments in dynamic web pages was presented. Two types of fragments in web pages, namely, shared fragments and lifetime-personalization fragments were identified and formally defined. A hierarchical fragment-aware web page model called the augmented-fragment tree model was proposed. An efficient algorithm to detect maximal fragments that are shared among multiple documents was proposed. A practical algorithm for detecting fragments based on their lifetime and personalization characteristics was designed. The proposed framework and algorithms were evaluated through experiments on real web sites. The effect of adopting the detected fragments on web-caches and origin-servers is experimentally studied.Ph.D.Committee Chair: Dr. Ling Liu; Committee Member: Dr. Arun Iyengar; Committee Member: Dr. Calton Pu; Committee Member: Dr. H. Venkateswaran; Committee Member: Dr. Mustaque Ahama

    INTELLIGENT CACHE FARMING ARCHITECTURE WITH THE RECOMMENDER SYSTEM

    Get PDF
    The Quality of Services (QoS) guaranteed by the Internet Service Providers (ISPs) is an important factor for users’ satisfaction in using the Internet. The implementation of the web proxy caching has been implemented to support this objective and also support the security procedure of the organizations. However, the success of guaranteeing the QoS of each ISP must be depended on the cache size and efficient caching policy. This paper proposes a new architecture of cache farming with the recommender system concept to manage users’ requirements. This solution helps reducing the retrieval time and also increasing the hit rate although the number of users increases without expanding the size of caches in the farm

    Online algorithms for content caching: an economic perspective

    Get PDF
    Content Caching at intermediate nodes, such that future requests can be served without going back to the origin of the content, is an effective way to optimize the operations of computer networks. Therefore, content caching reduces the delivery delay and improves the users’ Quality of Experience (QoE). The current literature either proposes offline algorithms that have complete knowledge of the request profile a priori, or proposes heuristics without provable performance. In this dissertation, online algorithms are presented for content caching in three different network settings: the current Internet Network, collaborative multi-cell coordinated network, and future Content Centric Networks (CCN). Due to the difficulty of obtaining a prior knowledge of contents’ popularities in real scenarios, an algorithm has to make a decision whether to cache a content or not when a request for the content is made, and without the knowledge of any future requests. The performance of the online algorithms is measured through a competitive ratio analysis, comparing the performance of the online algorithm to that of an omniscient optimal offline algorithm. Through theoretical analyses, it is shown that the proposed online algorithms achieve either the optimal or close to the optimal competitive ratio. Moreover, the algorithms have low complexity and can be implemented in a distributed way. The theoretical analyses are complemented with simulation-based experiments, and it is shown that the online algorithms have better performance compared to the state of the art caching schemes

    Efficient Hash-routing and Domain Clustering Techniques for Information-Centric Networks

    Get PDF
    Hash-routing is a well-known technique used in server-cluster environments to direct content requests to the responsible servers hosting the requested content. In this work, we look at hash-routing from a different angle and apply the technique to Information-Centric Networking (ICN) environments, where in-network content caches serve as temporary storage for content. In particular, edge-domain routers re-direct requests to in-network caches, more often than not off the shortest path, according to the hash-assignment function. Although the benefits of this off-path in-network caching scheme are significant (e.g., high cache hit rate with minimal co-ordination overhead), the basic scheme comes with disadvantages. That is, in case of very large domains the off-path detour of requests might increase latency to prohibitive levels. In order to deal with extensive detour delays, we investigate nodal/domain clustering techniques, according to which large domains are split in clusters, which in turn apply hash-routing in the subset of nodes of each cluster. We model and evaluate the behaviour of nodal clustering and report significant improvement in delivery latency, which comes at the cost of a slight decrease in cache hit rates (i.e., up to 50% improvement in delivery latency for less than 10% decrease in cache hit rate compared to the original hash-routing scheme applied in the whole domain)

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    Proactive content caching in future generation communication networks: Energy and security considerations

    Get PDF
    The proliferation of hand-held devices and Internet of Things (IoT) applications has heightened demand for popular content download. A high volume of content streaming/downloading services during peak hours can cause network congestion. Proactive content caching has emerged as a prospective solution to tackle this congestion problem. In proactive content caching, data storage units are used to store popular content in helper nodes at the network edge. This contributes to a reduction of peak traffic load and network congestion. However, data storage units require additional energy, which offers a challenge to researchers that intend to reduce energy consumption up to 90% in next generation networks. This thesis presents proactive content caching techniques to reduce grid energy consumption by utilizing renewable energy sources to power-up data storage units in helper nodes. The integration of renewable energy sources with proactive caching is a significant challenge due to the intermittent nature of renewable energy sources and investment costs. In this thesis, this challenge is tackled by introducing strategies to determine the optimal time of the day for content caching and optimal scheduling of caching nodes. The proposed strategies consider not only the availability of renewable energy but also temporal changes in network trac to reduce associated energy costs. While proactive caching can facilitate the reduction of peak trac load and the integration of renewable energy, cached content objects at helper nodes are often more vulnerable to malicious attacks due to less stringent security at edge nodes. Potential content leakage can lead to catastrophic consequences, particularly for cache-equipped Industrial Internet of Things (IIoT) applications. In this thesis, the concept of \trusted caching nodes (TCNs) is introduced. TCNs cache popular content objects and provide security services to connected links. The proposed study optimally allocates TCNs and selects the most suitable content forwarding paths. Furthermore, a caching strategy is designed for mobile edge computing systems to support IoT task offloading. The strategy optimally assigns security resources to offloaded tasks while satisfying their individual requirements. However, security measures often contribute to overheads in terms of both energy consumption and delay. Consequently, in this thesis, caching techniques have been designed to investigate the trade-off between energy consumption and probable security breaches. Overall, this thesis contributes to the current literature by simultaneously investigating energy and security aspects of caching systems whilst introducing solutions to relevant research problems

    Performance evaluation of caching placement algorithms in named data network for video on demand service

    Get PDF
    The purpose of this study is to evaluate the performance of caching placement algorithms (LCD, LCE, Prob, Pprob, Cross, Centrality, and Rand) in Named Data Network (NDN) for Video on Demand (VoD). This study aims to increment the service quality and to decrement the time of download. There are two stages of activities resulted in the outcome of the study: The first is to determine the causes of delay performance in NDN cache algorithms used in VoD workload. The second activity is the evaluation of the seven cache placement algorithms on the cloud of video content in terms of the key performance metrics: delay time, average cache hit ratio, total reduction in the network footprint, and reduction in load. The NS3 simulations and the Internet2 topology were used to evaluate and analyze the findings of each algorithm, and to compare the results based on cache sizes: 1GB, 10GB, 100GB, and 1TB. This study proves that the different user requests of online videos would lead to delay in network performance. In addition to that the delay also caused by the high increment of video requests. Also, the outcomes led to conclude that the increase in cache capacity leads to make the placement algorithms have a significant increase in the average cache hit ratio, a reduction in server load, and the total reduction in network footprint, which resulted in obtaining a minimized delay time. In addition to that, a conclusion was made that Centrality is the worst cache placement algorithm based on the results obtained

    Federated and autonomic management of multimedia services

    Get PDF
    • …
    corecore