328 research outputs found

    Adaptive transmission in heterogeneous networks

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166243/1/cmu2bf00018.pd

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    Interference alignment testbeds

    Get PDF
    Interference alignment has triggered high impact research in wireless communications since it was proposed nearly 10 years ago. However, the vast majority of research is centered on the theory of interference alignment and is hardly feasible in view of the existing state-of-the-art wireless technologies. Although several research groups have assessed the feasibility of interference alignment via testbed measurements in realistic environments, the experimental evaluation of interference alignment is still in its infancy since most of the experiments were limited to simpler scenarios and configurations. This article summarizes the practical limitations of experimentally evaluating interference alignment, provides an overview of the available interference alignment testbed implementations, including the costs, and highlights the imperatives for succeeding interference alignment testbed implementations. Finally, the article explores future research directions on the applications of interference alignment in the next generation wireless systems.Jacobo Fanjul's research has been supported by the Ministerio de Economía y Competitividad (MINECO) of Spain, under grants TEC2013-47141-C4-R (RACHEL project) and FPI grant BES-2014-069786. José A. García-Naya's research has been funded by the Xunta de Galicia (ED431C 2016–045, ED341D R2016/012, E0431 G/01), the Agencia Estatal de Investigación of Spain (TEC2013-47141-C4-1-R, TEC2015-69648-REOC, TEC2016-75067-C4-1-R), and ERDF funds of the EU (AEI/FEDER, UE). Hamed Farhadi's research has been funded by the Swedish Research Council (VR) under grant 2015–00500

    Interference alignment for one-hop and two-hops MIMO systems with uncoordinated interference

    Get PDF
    Providing higher data rate is a momentous goal for wireless communications systems, while interference is an important obstacle to reach this purpose. To cope with this problem, interference alignment (IA) has been proposed. In this paper, we propose two rank minimization methods to enhance the performance of IA in the presence of uncoordinated interference, i.e., interference that cannot be properly aligned with the rest of the network and thus is a crucial issue. In this scenario, perfect and imperfect channel state information (CSI) cases are considered. Our proposed approaches employ the l2 and the Schatten-p norms to approximate the rank function, due to its non-convexity. Also, we propose a new convex relaxation to expand the feasible set of our optimization problem, providing lower rank solutions compared to other IA methods from the literature. In addition, we propose a modified weighted-sum method to deal with interference in the relay-aided MIMO interference channel, which employs a set of weighting parameters in order to find more solutions

    Técnicas de equalização e pré-codificação para sistemas MC-CDMA

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesO número de dispositivos com ligações e aplicações sem fios está a aumentar exponencialmente, causando problemas de interferência e diminuindo a capacidade do sistema. Isto desencadeou uma procura por uma eficiência espectral superior e, consequentemente, tornou-se necessário desenvolver novas arquitecturas celulares que suportem estas novas exigências. Coordenação ou cooperação multicelular é uma arquitectura promissora para sistemas celulares sem fios. Esta ajuda a mitigar a interferência entre células, melhorando a equidade e a capacidade do sistema. É, portanto, uma arquitectura já em estudo ao abrigo da tecnologia LTE-Advanced sob o conceito de coordenação multiponto (CoMP). Nesta dissertação, considerámos um sistema coordenado MC-CDMA com pré-codificação e equalização iterativas. Uma das técnicas mais eficientes de pré-codificação é o alinhamento de interferências (IA). Este é um conceito relativamente novo que permite aumentar a capacidade do sistema em canais de elevada interferência. Sabe-se que, para os sistemas MC-CDMA, os equalizadores lineares convencionais não são os mais eficientes, devido à interferência residual entre portadoras (ICI). No entanto, a equalização iterativa no domínio da frequência (FDE) foi identificada como sendo uma das técnicas mais eficientes para lidar com ICI e explorar a diversidade oferecida pelos sistemas MIMO MC-CDMA. Esta técnica é baseada no conceito Iterative Block Decision Feedback Equalization (IB-DFE). Nesta dissertação, é proposto um sistema MC-CDMA que une a pré-codificação iterativa do alinhamento de interferências no transmissor ao equalizador baseado no IB-DFE, com cancelamento sucessivo de interferências (SIC) no receptor. Este é construído por dois blocos: um filtro linear, que mitiga a interferência inter-utilizador, seguido por um bloco iterativo no domínio da frequência, que separa eficientemente os fluxos de dados espaciais na presença de interferência residual inter-utilizador alinhada. Este esquema permite atingir o número máximo de graus de liberdade e permite simultaneamente um ganho óptimo de diversidade espacial. O desempenho deste esquema está perto do filtro adaptado- Matched Filter Bound (MFB).The number of devices with wireless connections and applications is increasing exponentially, causing interference problems and reducing the system’s capacity gain. This initiated a search for a higher spectral efficiency and therefore it became necessary to develop new cellular architectures that support these new requirements. Multicell cooperation or coordination is a promising architecture for cellular wireless systems to mitigate intercell interference, improving system fairness and increasing capacity, and thus is already under study in LTE-Advanced under the coordinated multipoint (CoMP) concept. In this thesis, efficient iterative precoding and equalization is considered for coordinated MC-CDMA based systems. One of the most efficient precoding techniques is interference alignment (IA), which is a relatively new concept that allows high capacity gains in interfering channels. It is well known that for MC-CDMA systems standard linear equalizers are not the most efficient due to residual inter carrier interference (ICI). However, iterative frequency-domain equalization (FDE) has been identified as one of the most efficient technique to deal with ICI and exploit the inherent space-frequency diversity of the MIMO MC-CDMA systems, namely the one based on Iterative Block Decision Feedback Equalization (IB-DFE) concept. In this thesis, it is proposed a MC-CDMA system that joins iterative IA precoding at the transmitter with IB-DFE successive interference cancellation (SIC) based receiver structure. The receiver is implemented in two steps: a linear filter, which mitigates the inter-user aligned interference, followed by an iterative frequency-domain receiver, which efficiently separates the spatial streams in the presence of residual inter-user aligned interference. This scheme provides the maximum degrees of freedom (DoF) and allows almost the optimum space-diversity gain. The scheme performance is close to the matched filter bound (MFB)

    An initial access optimization algorithm for millimetre wave 5G NR networks

    Get PDF
    Abstract. The fifth generation (5G) of cellular technology is expected to address the ever-increasing traffic requirements of the digital society. Delivering these higher data rates, higher bandwidth is required, thus, moving to the higher frequency millimetre wave (mmWave) spectrum is needed. However, to overcome the high isotropic propagation loss experienced at these frequencies, base station (BS) and the user equipment (UE) need to have highly directional antennas. Therefore, BS and UE are required to find the correct transmission (Tx) and reception (Rx) beam pair that align with each other. Achieving these fine alignment of beams at the initial access phase is quite challenging due to the unavailability of location information about BS and UE. In mmWave small cells, signals are blocked by obstacles. Hence, signal transmissions may not reach users. Also, some directions may have higher user density while some directions have lower or no user density. Therefore, an intelligent cell search is needed for initial access, which can steer its beams to a known populated area for UEs instead of wasting time and resources emitting towards an obstacle or unpopulated directions. In this thesis, we provide a dynamic weight-based beam sweeping direction and synchronization signal block (SSB) allocation algorithm to optimize the cell search in the mmWave initial access. The order of beam sweeping directions and the number of SSBs transmitted in each beam sweeping direction depend on previously learned experience. Previous learning is based on the number of detected UEs per SSB for each sweeping direction. Based on numerical simulations, the proposed algorithm is shown to be capable of detecting more users with a lower misdetection probability. Furthermore, it is possible to achieve the same performance with a smaller number of dynamic resource (i.e., SSB) allocation, compared to constant resource allocation. Therefore, this algorithm has better performance and optimum resource usage
    • …
    corecore