1,262 research outputs found

    Coordinated Crowd Simulation With Topological Scene Analysis

    Get PDF
    This paper proposes a new algorithm to produce globally coordinated crowds in an environment with multiple paths and obstacles. Simple greedy crowd control methods easily lead to congestion at bottlenecks within scenes, as the characters do not cooperate with one another. In computer animation, this problem degrades crowd quality especially when ordered behaviour is needed, such as soldiers marching towards a castle. Similarly, in applications such as real-time strategy games, this often causes player frustration, as the crowd will not move as efficiently as it should. Also, planning of building would usually require visualization of ordered evacuation to maximize the flow. Planning such globally coordinated crowd movement is usually labour intensive. Here, we propose a simple solution that is easy to use and efficient in computation. First, we compute the harmonic field of the environment, taking into account the starting points, goals and obstacles. Based on the field, we represent the topology of the environment using a Reeb Graph, and calculate the maximum capacity for each path in the graph. With the harmonic field and the Reeb Graph, path planning of crowd can be performed using a lightweight algorithm, such that any blocking of one another's paths is minimized. Comparing to previous methods, our system can synthesize globally coordinated crowd with smooth and efficient movement. It also enables control of the crowd with high-level parameters such as the degree of cooperation and congestion. Finally, the method is scalable to thousands of characters with minimal impact to computation time. It is best applied in interactive crowd synthesis systems such as animation designs and real-time strategy games

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    How simple rules determine pedestrian behavior and crowd disasters

    Full text link
    With the increasing size and frequency of mass events, the study of crowd disasters and the simulation of pedestrian flows have become important research areas. Yet, even successful modeling approaches such as those inspired by Newtonian force models are still not fully consistent with empirical observations and are sometimes hard to calibrate. Here, a novel cognitive science approach is proposed, which is based on behavioral heuristics. We suggest that, guided by visual information, namely the distance of obstructions in candidate lines of sight, pedestrians apply two simple cognitive procedures to adapt their walking speeds and directions. While simpler than previous approaches, this model predicts individual trajectories and collective patterns of motion in good quantitative agreement with a large variety of empirical and experimental data. This includes the emergence of self-organization phenomena, such as the spontaneous formation of unidirectional lanes or stop-and-go waves. Moreover, the combination of pedestrian heuristics with body collisions generates crowd turbulence at extreme densities-a phenomenon that has been observed during recent crowd disasters. By proposing an integrated treatment of simultaneous interactions between multiple individuals, our approach overcomes limitations of current physics-inspired pair interaction models. Understanding crowd dynamics through cognitive heuristics is therefore not only crucial for a better preparation of safe mass events. It also clears the way for a more realistic modeling of collective social behaviors, in particular of human crowds and biological swarms. Furthermore, our behavioral heuristics may serve to improve the navigation of autonomous robots.Comment: Article accepted for publication in PNA

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Topology based global crowd control

    Get PDF
    We propose a method to determine the flow of large crowds of agents in a scene such that it is filled to its capacity with a coordinated, dynamically moving crowd. Our approach provides a focus on cooperative control across the entire crowd. This is done with a view to providing a method which animators can use to easily populate and fill a scene. We solve this global planning problem by first finding the topology of the scene using a Reeb graph, which is computed from a Harmonic field of the environment. The Maximum flow can then be calculated across this graph detailing how the agents should move through the space. This information is converted back from the topological level to the geometric using a route planner and the Harmonic field. We provide evidence of the system’s effectiveness in creating dynamic motion through comparison to a recent method. We also demonstrate how this system allows the crowd to be controlled globally with a couple of simple intuitive controls and how it can be useful for the purpose of designing buildings and providing control in team sports

    Authoring virtual crowds: a survey

    Get PDF
    Recent advancements in crowd simulation unravel a wide range of functionalities for virtual agents, delivering highly-realistic,natural virtual crowds. Such systems are of particular importance to a variety of applications in fields such as: entertainment(e.g., movies, computer games); architectural and urban planning; and simulations for sports and training. However, providingtheir capabilities to untrained users necessitates the development of authoring frameworks. Authoring virtual crowds is acomplex and multi-level task, varying from assuming control and assisting users to realise their creative intents, to deliveringintuitive and easy to use interfaces, facilitating such control. In this paper, we present a categorisation of the authorable crowdsimulation components, ranging from high-level behaviours and path-planning to local movements, as well as animation andvisualisation. We provide a review of the most relevant methods in each area, emphasising the amount and nature of influencethat the users have over the final result. Moreover, we discuss the currently available authoring tools (e.g., graphical userinterfaces, drag-and-drop), identifying the trends of early and recent work. Finally, we suggest promising directions for futureresearch that mainly stem from the rise of learning-based methods, and the need for a unified authoring framework.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 860768 (CLIPE project). This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No 739578 and the Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital PolicyPeer ReviewedPostprint (author's final draft

    Real-Time Storytelling with Events in Virtual Worlds

    Get PDF
    We present an accessible interactive narrative tool for creating stories among a virtual populace inhabiting a fully-realized 3D virtual world. Our system supports two modalities: assisted authoring where a human storyteller designs stories using a storyboard-like interface called CANVAS, and exploratory authoring where a human author experiences a story as it happens in real-time and makes on-the-fly narrative trajectory changes using a tool called Storycraft. In both cases, our system analyzes the semantic content of the world and the narrative being composed, and provides automated assistance such as completing partially-specified stories with causally complete sequences of intermediate actions. At its core, our system revolves around events -â?? pre-authored multi-actor task sequences describing interactions between groups of actors and props. These events integrate complex animation and interaction tasks with precision control and expose them as atoms of narrative significance to the story direction systems. Events are an accessible tool and conceptual metaphor for assembling narrative arcs, providing a tightly-coupled solution to the problem of converting author intent to real-time animation synthesis. Our system allows simple and straightforward macro- and microscopic control over large numbers of virtual characters with diverse and sophisticated behavior capabilities, and reduces the complicated action space of an interactive narrative by providing analysis and user assistance in the form of semi-automation and recommendation services

    Example Based Caricature Synthesis

    Get PDF
    The likeness of a caricature to the original face image is an essential and often overlooked part of caricature production. In this paper we present an example based caricature synthesis technique, consisting of shape exaggeration, relationship exaggeration, and optimization for likeness. Rather than relying on a large training set of caricature face pairs, our shape exaggeration step is based on only one or a small number of examples of facial features. The relationship exaggeration step introduces two definitions which facilitate global facial feature synthesis. The first is the T-Shape rule, which describes the relative relationship between the facial elements in an intuitive manner. The second is the so called proportions, which characterizes the facial features in a proportion form. Finally we introduce a similarity metric as the likeness metric based on the Modified Hausdorff Distance (MHD) which allows us to optimize the configuration of facial elements, maximizing likeness while satisfying a number of constraints. The effectiveness of our algorithm is demonstrated with experimental results

    CASA 2009:International Conference on Computer Animation and Social Agents

    Get PDF
    corecore