4 research outputs found

    Self-Calibration of Two-Dimensional Precision Metrology Systems

    Get PDF
    In modern industry, there usually exist high-precision stages, such as reticle stages and wafer stages in VLSI lithography tools, metrology stages in coordinate measurement machines, motion stages in CNC machine tools, etc. These stages need high-precision measurement/metrology systems for monitoring its XY movement. As the metrology systems are quite accurate, we often cannot find a standard tool with better accuracy to implement a traditional calibration process for systematic measurement error (i.e., stage error) determination and measurement accuracy compensation. Subsequently, self-calibration technology is developed to meet this challenge and to solve the calibration problem. In this chapter, we study the self-calibration of two-dimensional precision metrology systems and present a holistic self-calibration strategy. This strategy utilizes three measurement views of an artifact plate with mark positions not precisely known on the un-calibrated two-dimensional metrology stage and constructs relevant symmetry, transitivity, and redundancy of the stage error of the metrology stage. The misalignment errors of all measurement views, especially including those of the translation view, are totally determined by detailed mathematical manipulations. Then, a redundant equation group is synthesized, and a least-square–based robust estimation law is employed to calculate out the stage error even under the existence of random measurement noise. Furthermore, as the determination of the misalignment error components of the measurement views is rather complicated but important in previous and the proposed methods, this chapter also significantly analyzes the necessity of this costly computation. The proposed approach is investigated by simulation computation, and the simulation results prove that the proposed determination scheme can calculate out the stage error rather exactly without random measurement noise. Furthermore, when there exist various random measurement noises, the calibration accuracy of the proposed strategy is also investigated, and the results illustrate that the standard deviations of the calibration error are consistently with the same level of those of the random measurement noises. All these results verify that the proposed scheme can realize the stage error rather accurately even under the existence of random measurement noise. The practical procedure for performing a standard self-calibration is also introduced for engineers to facilitate actual implementation

    Coordinated Adaptive Robust Contouring Control of an Industrial Biaxial Precision Gantry With Cogging Force Compensations

    Get PDF
    Cogging force is an important source of disturbances for linear-motor-driven systems. To obtain a higher level of contouring motion control performance for multiaxis mechanical systems subject to significant nonlinear cogging forces, both the coordinated control of multiaxis motions and the effective compensation of cogging forces are necessary. In addition, the effect of unavoidable velocity measurement noises needs to be sufficiently attenuated. This paper presents a discontinuous-projection-based desired compensation adaptive robust contouring controller to address these control issues all at once. Specifically, the presented approach explicitly takes into account the specific characteristics of cogging forces in the controller designs and employs the task coordinate formulation for coordinated motion controls. Theoretically, the resulting controller achieves a guaranteed transient performance and a steady-state contouring accuracy even in the presence of both parametric uncertainties and uncertain nonlinearities. In addition, the controller also achieves asymptotic output tracking when there are parametric uncertainties only. Comparative experimental results obtained on a high-speed Anorad industrial biaxial precision gantry are presented to verify the excellent contouring performance of the proposed control scheme and the effectiveness of the cogging force compensations

    Influência do efeito de extremidade de atuadores eletromagnéticos lineares nas indutâncias

    Get PDF
    Este trabalho demonstra que o efeito de extremidade existente em atuadores eletromagnéticos lineares pode ter influência significativa nas indutâncias próprias, mútuas e síncronas, com valores dependentes da posição que podem ser utilizados para monitoração da posição axial da armadura. O estudo é aplicado a um atuador eletromagnético linear tubular de ímãs permanentes com duplo arranjo de quase-Halbach e bobina móvel, que foi concebido para fins de uso em sistemas de suspensão eletromagnética ativa e semi-ativa. A partir da revisão de literatura apresentada, classificou-se o efeito de extremidade de máquinas lineares síncronas de ímãs permanentes quanto aos tipos, causas, consequências e técnicas de mitigação (caso seja necessário). Adicionalmente, os tipos de controle sem sensores são exemplificados a fim de se identificar maneiras possíveis de adequar algum ao atuador em estudo. São apresentados casos de trabalhos na literatura que utilizam o controle sem sensores em máquinas que possuem indutâncias com comportamento semelhante. Em termos de análise, a distribuição do fluxo magnético no atuador é estudada e um modelo semianalítico é elaborado para calcular o valor das indutâncias com base nos dados de fluxo magnético obtido por simulação numérica. Logo, modelos numéricos completos e parametrizados do atuador são elaborados para simulação transiente e magnetostática e a partir destes as indutâncias são obtidas. As indutâncias também são medidas experimentalmente e na análise dos resultados as incertezas de medição são calculadas e um projeto de experimento é apresentado. Os resultados dos modelos semianalítico e numérico apresentam boa concordância com os resultados experimentais. Por fim, a adequação do atuador para futura aplicação de controle sem sensores é discutida tendo como base a variação de indutâncias devido ao efeito de extremida.This work demonstrates that the end effect in linear electromagnetic actuators can have a significant influence on the self-, mutual and synchronous inductances, with positiondependent values that can be used to measure the axial position of the armature. The study is applied to a linear synchronous electromagnetic actuator with two arrangements of quasi- Halbach permanent magnets and moving coil, which was designed for use in active and semiactive electromagnetic suspension systems. Based on the literature review presented, the end effect of permanent magnet synchronous linear machines was classified with regard to: types, causes, consequences and mitigation techniques (if necessary). In addition, the types of sensorless control methods are exemplified in order to identify a possible method to be applied to the actuator under study. It was found in the literature that sensorless control was applied to machines that have inductances with similar behavior. In terms of analysis, the distribution of the magnetic flux in the actuator is studied and a semi-analytical model was developed to calculate the value of the inductances based on the data of magnetic flux obtained through numerical simulation. Thus, the complete parametrized numerical models of the actuator were built for transient and magnetostatic simulation, and from these the inductances were obtained. The inductances are also measured experimentally, and in the analysis of the results the measurement uncertainties are calculated and a design of experiments is presented. The results of the semi-analytical and numerical models show good agreement with the experimental results. Finally, the suitability of the actuator for future application of sensorless control is discussed based on the variation of inductances due to the end effect
    corecore