671 research outputs found

    Slotted Aloha for Networked Base Stations

    Full text link
    We study multiple base station, multi-access systems in which the user-base station adjacency is induced by geographical proximity. At each slot, each user transmits (is active) with a certain probability, independently of other users, and is heard by all base stations within the distance rr. Both the users and base stations are placed uniformly at random over the (unit) area. We first consider a non-cooperative decoding where base stations work in isolation, but a user is decoded as soon as one of its nearby base stations reads a clean signal from it. We find the decoding probability and quantify the gains introduced by multiple base stations. Specifically, the peak throughput increases linearly with the number of base stations mm and is roughly m/4m/4 larger than the throughput of a single-base station that uses standard slotted Aloha. Next, we propose a cooperative decoding, where the mutually close base stations inform each other whenever they decode a user inside their coverage overlap. At each base station, the messages received from the nearby stations help resolve collisions by the interference cancellation mechanism. Building from our exact formulas for the non-cooperative case, we provide a heuristic formula for the cooperative decoding probability that reflects well the actual performance. Finally, we demonstrate by simulation significant gains of cooperation with respect to the non-cooperative decoding.Comment: conference; submitted on Dec 15, 201

    Throughput analysis of ALOHA with cooperative diversity

    Get PDF
    Cooperative transmissions emulate multi-antenna systems and can improve the quality of signal reception. In this paper, we propose and analyze a cross layer random access scheme, C-ALOHA, that enables cooperative transmissions in the context of ALOHA system. Our analysis shows that over a fading channel C-ALOHA can improve the throughput by 30%, as compared to standard ALOHA protocol

    CSMA Local Area Networking under Dynamic Altruism

    Full text link
    In this paper, we consider medium access control of local area networks (LANs) under limited-information conditions as befits a distributed system. Rather than assuming "by rule" conformance to a protocol designed to regulate packet-flow rates (e.g., CSMA windowing), we begin with a non-cooperative game framework and build a dynamic altruism term into the net utility. The effects of altruism are analyzed at Nash equilibrium for both the ALOHA and CSMA frameworks in the quasistationary (fictitious play) regime. We consider either power or throughput based costs of networking, and the cases of identical or heterogeneous (independent) users/players. In a numerical study we consider diverse players, and we see that the effects of altruism for similar players can be beneficial in the presence of significant congestion, but excessive altruism may lead to underuse of the channel when demand is low
    • …
    corecore