1,251 research outputs found

    Network Codes for Real-Time Applications

    Get PDF
    We consider the scenario of broadcasting for real-time applications and loss recovery via instantly decodable network coding. Past work focused on minimizing the completion delay, which is not the right objective for real-time applications that have strict deadlines. In this work, we are interested in finding a code that is instantly decodable by the maximum number of users. First, we prove that this problem is NP-Hard in the general case. Then we consider the practical probabilistic scenario, where users have i.i.d. loss probability and the number of packets is linear or polynomial in the number of users. In this scenario, we provide a polynomial-time (in the number of users) algorithm that finds the optimal coded packet. The proposed algorithm is evaluated using both simulation and real network traces of a real-time Android application. Both results show that the proposed coding scheme significantly outperforms the state-of-the-art baselines: an optimal repetition code and a COPE-like greedy scheme.Comment: ToN 2013 Submission Versio

    Self- and Socially-Regulated Learning in Middle School Science Classrooms: A Multiple Case Study

    Get PDF
    Students must employ self-regulated learning (SRL) and socially-regulated learning (soRL) in the science classroom, which includes a wide array of independent and collaborative learning activities. However, little is known about how student SRL and soRL co-occur in students’ learning and how the classroom teacher influences that regulation in situ (Cabrera et al., in preparation; Panadero et al., 2015). This explanatory, sequential case study analyzes classroom video data from six middle school science classrooms. The study uses an integrated coding scheme that captures SRL and soRL behaviors, soRL modes, and targets of regulation (Greene & Azevedo, 2009; Hadwin et al., 2018; Heirwig et al., 2019; and Zimmerman, 2002). Results show that student SRL and soRL behaviors are influenced by the activity structure and physical layout of the classroom, regulatory behaviors mostly manifest as behavioral and cognitive regulation in the performance phase, and teachers impact student regulation by prompting behavioral monitoring and comprehension monitoring. Theoretical and practical implications are discussed in addition to future directions for SRL and soRL research

    Human Aspect on Chain of Custody (CoC) System Performance

    Get PDF
    The tropical forests cover 24% of tropical land area. They are the most productive terrestrial ecosystems on earth with high priorities for biodiversity conservation. These forests store a substantial amount of carbon in biomass and soil, and they also regulate the transfer of carbon into the atmosphere as carbon dioxide (CO2). Indonesia is having the third tropical forest area in the world after Brazil and Congo. Over 50 years forest has been felled both legally as well as illegally. High rate of forest degradation resulted from unsustainable forest management, rampant illegal logging, forest area encroachment, conversion and natural disaster. All urges rapid improvement of management system of Indonesia’s forest resources (Holmes, 2002). Forest certification is one tool that can support the achievement of sustainable forest management goal. Under current operation of join certification protocol between the Forest Stewardship Council (FSC) and the Indonesian Ecolabelling Institute (LEI) in Indonesia, forest management units must be able to show the required performance indicated in LEI criteria and indicator as well as FSC principles and criteria to attain certification of their products. The gap between current practices and performance required by forest certifications schemes is still enormous. The performance of forest certification system from LEI is determined very much by the human that is involved in the process of planning and operation. The name of certification system is chain of custody (CoC) certification. CoC operation involves activities such as tracing raw material from the forest to the factory, through shipping and manufacturing, to the final end product. In all of the above processes, the roles of human are critical, although the specific roles played from one process to another are different. In this paper we present an identification of human aspect and other factors that predominantly affect CoC system performance

    Encaminhamento confiável e energeticamente eficiente para redes ad hoc

    Get PDF
    Doutoramento em InformáticaIn Mobile Ad hoc NETworks (MANETs), where cooperative behaviour is mandatory, there is a high probability for some nodes to become overloaded with packet forwarding operations in order to support neighbor data exchange. This altruistic behaviour leads to an unbalanced load in the network in terms of traffic and energy consumption. In such scenarios, mobile nodes can benefit from the use of energy efficient and traffic fitting routing protocol that better suits the limited battery capacity and throughput limitation of the network. This PhD work focuses on proposing energy efficient and load balanced routing protocols for ad hoc networks. Where most of the existing routing protocols simply consider the path length metric when choosing the best route between a source and a destination node, in our proposed mechanism, nodes are able to find several routes for each pair of source and destination nodes and select the best route according to energy and traffic parameters, effectively extending the lifespan of the network. Our results show that by applying this novel mechanism, current flat ad hoc routing protocols can achieve higher energy efficiency and load balancing. Also, due to the broadcast nature of the wireless channels in ad hoc networks, other technique such as Network Coding (NC) looks promising for energy efficiency. NC can reduce the number of transmissions, number of re-transmissions, and increase the data transfer rate that directly translates to energy efficiency. However, due to the need to access foreign nodes for coding and forwarding packets, NC needs a mitigation technique against unauthorized accesses and packet corruption. Therefore, we proposed different mechanisms for handling these security attacks by, in particular by serially concatenating codes to support reliability in ad hoc network. As a solution to this problem, we explored a new security framework that proposes an additional degree of protection against eavesdropping attackers based on using concatenated encoding. Therefore, malicious intermediate nodes will find it computationally intractable to decode the transitive packets. We also adopted another code that uses Luby Transform (LT) as a pre-coding code for NC. Primarily being designed for security applications, this code enables the sink nodes to recover corrupted packets even in the presence of byzantine attacks.Nas redes móveis ad hoc (MANETs), onde o comportamento cooperativo é obrigatório, existe uma elevada probabilidade de alguns nós ficarem sobrecarregados nas operações de encaminhamento de pacotes no apoio à troca de dados com nós vizinhos. Este comportamento altruísta leva a uma sobrecarga desequilibrada em termos de tráfego e de consumo de energia. Nestes cenários, os nós móveis poderão beneficiar do uso da eficiência energética e de protocolo de encaminhamento de tráfego que melhor se adapte à sua capacidade limitada da bateria e velocidade de processamento. Este trabalho de doutoramento centra-se em propor um uso eficiente da energia e protocolos de encaminhamento para balanceamento de carga nas redes ad hoc. Actualmente a maioria dos protocolos de encaminhamento existentes considera simplesmente a métrica da extensão do caminho, ou seja o número de nós, para a escolha da melhor rota entre fonte (S) e um nó de destino (D); no mecanismo aqui proposto os nós são capazes de encontrar várias rotas por cada par de nós de origem e destino e seleccionar o melhor caminho segundo a energia e parâmetros de tráfego, aumentando o tempo de vida útil da rede. Os nossos resultados mostram que pela aplicação deste novo mecanismo, os protocolos de encaminhamento ad hoc actuais podem alcançar uma maior eficiência energética e balanceamento de carga. Para além disso, devido à natureza de difusão dos canais sem fio em redes ad-hoc, outras técnicas, tais como a Codificação de Rede (NC), parecem ser também promissoras para a eficiência energética. NC pode reduzir o número de transmissões, e número de retransmissões e aumentar a taxa de transferência de dados traduzindo-se directamente na melhoria da eficiência energética. No entanto, devido ao acesso dos nós intermediários aos pacotes em trânsito e sua codificação, NC necessita de uma técnica que limite as acessos não autorizados e a corrupção dos pacotes. Explorou-se o mecanismo de forma a oferecer um novo método de segurança que propõe um grau adicional de protecção contra ataques e invasões. Por conseguinte, os nós intermediários mal-intencionados irão encontrar pacotes em trânsito computacionalmente intratáveis em termos de descodificação. Adoptou-se também outro código que usa Luby Transform (LT) como um código de précodificação no NC. Projectado inicialmente para aplicações de segurança, este código permite que os nós de destino recuperem pacotes corrompidos mesmo em presença de ataques bizantinos

    NASA Tech Briefs, July 1990

    Get PDF
    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    • …
    corecore