1,947 research outputs found

    ๋ชจ์…˜ ํ”„๋ฆฌ๋จธํ‹ฐ๋ธŒ๋ฅผ ์ด์šฉํ•œ ๋ณต์žกํ•œ ๋กœ๋ด‡ ์ž„๋ฌด ํ•™์Šต ๋ฐ ์ผ๋ฐ˜ํ™” ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ•ญ๊ณต์šฐ์ฃผ๊ณตํ•™๊ณผ, 2020. 8. ๊น€ํ˜„์ง„.Learning from demonstrations (LfD) is a promising approach that enables robots to perform a specific movement. As robotic manipulations are substituting a variety of tasks, LfD algorithms are widely used and studied for specifying the robot configurations for the various types of movements. This dissertation presents an approach based on parametric dynamic movement primitives (PDMP) as a motion representation algorithm which is one of relevant LfD techniques. Unlike existing motion representation algorithms, this work not only represents a prescribed motion but also computes the new behavior through a generalization of multiple demonstrations in the actual environment. The generalization process uses Gaussian process regression (GPR) by representing the nonlinear relationship between the PDMP parameters that determine motion and the corresponding environmental variables. The proposed algorithm shows that it serves as a powerful optimal and real-time motion planner among the existing planning algorithms when optimal demonstrations are provided as dataset. In this dissertation, the safety of motion is also considered. Here, safety refers to keeping the system away from certain configurations that are unsafe. The safety criterion of the PDMP internal parameters are computed to check the safety. This safety criterion reflects the new behavior computed through the generalization process, as well as the individual motion safety of the demonstration set. The demonstrations causing unsafe movement are identified and removed. Also, the demolished demonstrations are replaced by proven demonstrations upon this criterion. This work also presents an extension approach reducing the number of required demonstrations for the PDMP framework. This approach is effective where a single mission consists of multiple sub-tasks and requires numerous demonstrations in generalizing them. The whole trajectories in provided demonstrations are segmented into multiple sub-tasks representing unit motions. Then, multiple PDMPs are formed independently for correlated-segments. The phase-decision process determines which sub-task and associated PDMPs to be executed online, allowing multiple PDMPs to be autonomously configured within an integrated framework. GPR formulations are applied to obtain execution time and regional goal configuration for each sub-task. Finally, the proposed approach and its extension are validated with the actual experiments of mobile manipulators. The first two scenarios regarding cooperative aerial transportation demonstrate the excellence of the proposed technique in terms of quick computation, generation of efficient movement, and safety assurance. The last scenario deals with two mobile manipulations using ground vehicles and shows the effectiveness of the proposed extension in executing complex missions.์‹œ์—ฐ ํ•™์Šต ๊ธฐ๋ฒ•(Learning from demonstrations, LfD)์€ ๋กœ๋ด‡์ด ํŠน์ • ๋™์ž‘์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ์œ ๋งํ•œ ๋™์ž‘ ์ƒ์„ฑ ๊ธฐ๋ฒ•์ด๋‹ค. ๋กœ๋ด‡ ์กฐ์ž‘๊ธฐ๊ฐ€ ์ธ๊ฐ„ ์‚ฌํšŒ์—์„œ ๋‹ค์–‘ํ•œ ์—…๋ฌด๋ฅผ ๋Œ€์ฒดํ•ด ๊ฐ์— ๋”ฐ๋ผ, ๋‹ค์–‘ํ•œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋กœ๋ด‡์˜ ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด LfD ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ๋„๋ฆฌ ์—ฐ๊ตฌ๋˜๊ณ , ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ LfD ๊ธฐ๋ฒ• ์ค‘ ๋ชจ์…˜ ํ”„๋ฆฌ๋จธํ‹ฐ๋ธŒ ๊ธฐ๋ฐ˜์˜ ๋™์ž‘ ์žฌ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ Parametric dynamic movement primitives(PDMP)์— ๊ธฐ์ดˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ชจ๋ฐ”์ผ ์กฐ์ž‘๊ธฐ์˜ ๊ถค์ ์„ ์ƒ์„ฑํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋™์ž‘ ์žฌ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋‹ฌ๋ฆฌ, ์ด ์—ฐ๊ตฌ๋Š” ์ œ๊ณต๋œ ์‹œ์—ฐ์—์„œ ํ‘œํ˜„๋œ ๋™์ž‘์„ ๋‹จ์ˆœํžˆ ์žฌ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์— ๊ทธ์น˜์ง€ ์•Š๊ณ , ์ƒˆ๋กœ์šด ํ™˜๊ฒฝ์— ๋งž๊ฒŒ ์ผ๋ฐ˜ํ™” ํ•˜๋Š” ๊ณผ์ •์„ ํฌํ•จํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•˜๋Š” ์ผ๋ฐ˜ํ™” ๊ณผ์ •์€ PDMPs์˜ ๋‚ด๋ถ€ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’์ธ ์Šคํƒ€์ผ ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์‚ฌ์ด์˜ ๋น„์„ ํ˜• ๊ด€๊ณ„๋ฅผ ๊ฐ€์šฐ์Šค ํšŒ๊ท€ ๊ธฐ๋ฒ• (Gaussian process regression, GPR)์„ ์ด์šฉํ•˜์—ฌ ์ˆ˜์‹์ ์œผ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ๋˜ํ•œ ์ตœ์  ์‹œ์—ฐ๋ฅผ ํ•™์Šตํ•˜๋Š” ๋ฐฉ์‹์„ ํ†ตํ•ด ๊ฐ•๋ ฅํ•œ ์ตœ์  ์‹ค์‹œ๊ฐ„ ๊ฒฝ๋กœ ๊ณ„ํš ๊ธฐ๋ฒ•์œผ๋กœ๋„ ์‘์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋˜ํ•œ ๋กœ๋ด‡์˜ ๊ตฌ๋™ ์•ˆ์ „์„ฑ๋„ ๊ณ ๋ คํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์—์„œ ๋‹ค๋ฃจ์–ด์ง„ ์‹œ์—ฐ ๊ด€๋ฆฌ ๊ธฐ์ˆ ์ด ๋กœ๋ด‡์˜ ๊ตฌ๋™ ํšจ์œจ์„ฑ์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ œ์‹œ๋œ ๊ฒƒ๊ณผ ๋‹ฌ๋ฆฌ, ์ด ์—ฐ๊ตฌ๋Š” ๊ฐ•ํ•œ ๊ตฌ์†์กฐ๊ฑด์œผ๋กœ ๋กœ๋ด‡์˜ ๊ตฌ๋™ ์•ˆ์ „์„ฑ์„ ํ™•๋ณดํ•˜๋Š” ์‹œ์—ฐ ๊ด€๋ฆฌ ๊ธฐ์ˆ ์„ ํ†ตํ•ด ์•ˆ์ •์„ฑ์„ ๊ณ ๋ คํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ์‹์„ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ์‹์€ ์Šคํƒ€์ผ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’ ์ƒ์—์„œ ์•ˆ์ „์„ฑ ๊ธฐ์ค€์„ ๊ณ„์‚ฐํ•˜๋ฉฐ, ์ด ์•ˆ์ „ ๊ธฐ์ค€์„ ํ†ตํ•ด ์‹œ์—ฐ์„ ์ œ๊ฑฐํ•˜๋Š” ์ผ๋ จ์˜ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋˜ํ•œ, ์ œ๊ฑฐ๋œ ์‹œ์œ„๋ฅผ ์•ˆ์ „ ๊ธฐ์ค€์— ๋”ฐ๋ผ ์ž…์ฆ๋œ ์‹œ์œ„๋กœ ๋Œ€์ฒดํ•˜์—ฌ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ์ €ํ•˜์‹œํ‚ค์ง€ ์•Š๋„๋ก ์‹œ์œ„๋ฅผ ๊ด€๋ฆฌํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์ˆ˜์˜ ์‹œ์—ฐ ๊ฐ๊ฐ ๊ฐœ๋ณ„ ๋™์ž‘ ์•ˆ์ „์„ฑ ๋ฟ ์•„๋‹ˆ๋ผ ์˜จ๋ผ์ธ ๋™์ž‘์˜ ์•ˆ์ „์„ฑ๊นŒ์ง€ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‹ค์‹œ๊ฐ„ ๋กœ๋ด‡ ์กฐ์ž‘๊ธฐ ์šด์šฉ์‹œ ์•ˆ์ „์„ฑ์ด ํ™•๋ณด๋  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ๋œ ์•ˆ์ •์„ฑ์„ ๊ณ ๋ คํ•œ ์‹œ์—ฐ ๊ด€๋ฆฌ ๊ธฐ์ˆ ์€ ๋˜ํ•œ ํ™˜๊ฒฝ์˜ ์ •์  ์„ค์ •์ด ๋ณ€๊ฒฝ๋˜์–ด ๋ชจ๋“  ์‹œ์—ฐ์„ ๊ต์ฒดํ•ด์•ผ ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒํ™ฉ์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ์—ฐ๋“ค์„ ํŒ๋ณ„ํ•˜๊ณ , ํšจ์œจ์ ์œผ๋กœ ์žฌ์‚ฌ์šฉํ•˜๋Š” ๋ฐ ์‘์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ์ž„๋ฌด์—์„œ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š” PDMPs์˜ ํ™•์žฅ ๊ธฐ๋ฒ•์ธ seg-PDMPs๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ด ์ ‘๊ทผ๋ฐฉ์‹์€ ๋ณต์žกํ•œ ์ž„๋ฌด๊ฐ€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋ณต์ˆ˜๊ฐœ์˜ ๊ฐ„๋‹จํ•œ ํ•˜์œ„ ์ž‘์—…์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค๊ณ  ๊ฐ€์ •ํ•œ๋‹ค. ๊ธฐ์กด PDMPs์™€ ๋‹ฌ๋ฆฌ seg-PDMPs๋Š” ์ „์ฒด ๊ถค์ ์„ ํ•˜์œ„ ์ž‘์—…์„ ๋‚˜ํƒ€๋‚ด๋Š” ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋‹จ์œ„ ๋™์ž‘์œผ๋กœ ๋ถ„ํ• ํ•˜๊ณ , ๊ฐ ๋‹จ์œ„๋™์ž‘์— ๋Œ€ํ•ด ์—ฌ๋Ÿฌ๊ฐœ์˜ PDMPs๋ฅผ ๊ตฌ์„ฑํ•œ๋‹ค. ๊ฐ ๋‹จ์œ„ ๋™์ž‘ ๋ณ„๋กœ ์ƒ์„ฑ๋œ PDMPs๋Š” ํ†ตํ•ฉ๋œ ํ”„๋ ˆ์ž„์›Œํฌ๋‚ด์—์„œ ๋‹จ๊ณ„ ๊ฒฐ์ • ํ”„๋กœ์„ธ์Šค๋ฅผ ํ†ตํ•ด ์ž๋™์ ์œผ๋กœ ํ˜ธ์ถœ๋œ๋‹ค. ๊ฐ ๋‹จ๊ณ„ ๋ณ„๋กœ ๋‹จ์œ„ ๋™์ž‘์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ์‹œ๊ฐ„ ๋ฐ ํ•˜์œ„ ๋ชฉํ‘œ์ ์€ ๊ฐ€์šฐ์Šค ๊ณต์ • ํšŒ๊ท€(GPR)๋ฅผ ์ด์šฉํ•œ ํ™˜๊ฒฝ๋ณ€์ˆ˜์™€์˜์˜ ๊ด€๊ณ„์‹์„ ํ†ตํ•ด ์–ป๋Š”๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ์ด ์—ฐ๊ตฌ๋Š” ์ „์ฒด์ ์œผ๋กœ ์š”๊ตฌ๋˜๋Š” ์‹œ์—ฐ์˜ ์ˆ˜๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ค„์ผ ๋ฟ ์•„๋‹ˆ๋ผ, ๊ฐ ๋‹จ์œ„๋™์ž‘์˜ ํ‘œํ˜„ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•œ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ˜‘๋™ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡ ์กฐ์ž‘๊ธฐ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ๊ฒ€์ฆ๋œ๋‹ค. ์„ธ ๊ฐ€์ง€์˜ ์‹œ๋‚˜๋ฆฌ์˜ค๊ฐ€ ๋ณธ ๋…ผ๋ฌธ์—์„œ ๋‹ค๋ฃจ์–ด์ง€๋ฉฐ, ํ•ญ๊ณต ์šด์†ก๊ณผ ๊ด€๋ จ๋œ ์ฒซ ๋‘ ๊ฐ€์ง€ ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” PDMPs ๊ธฐ๋ฒ•์ด ๋กœ๋ด‡ ์กฐ์ž‘๊ธฐ์—์„œ ๋น ๋ฅธ ์ ์‘์„ฑ, ์ž„๋ฌด ํšจ์œจ์„ฑ๊ณผ ์•ˆ์ „์„ฑ ๋ชจ๋‘ ๋งŒ์กฑํ•˜๋Š” ๊ฒƒ์„ ์ž…์ฆํ•œ๋‹ค. ๋งˆ์ง€๋ง‰ ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” ์ง€์ƒ ์ฐจ๋Ÿ‰์„ ์ด์šฉํ•œ ๋‘ ๊ฐœ์˜ ๋กœ๋ด‡ ์กฐ์ž‘๊ธฐ์— ๋Œ€ํ•œ ์‹คํ—˜์œผ๋กœ ๋ณต์žกํ•œ ์ž„๋ฌด ์ˆ˜ํ–‰์„ ํ•˜๊ธฐ ์œ„ํ•ด ํ™•์žฅ๋œ ๊ธฐ๋ฒ•์ธ seg-PDMPs๊ฐ€ ํšจ๊ณผ์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ ์ผ๋ฐ˜ํ™”๋œ ๋™์ž‘์„ ์ƒ์„ฑํ•จ์„ ๊ฒ€์ฆํ•œ๋‹ค.1 Introduction 1 1.1 Motivations 1 1.2 Literature Survey 3 1.2.1 Conventional Motion Planning in Mobile Manipulations 3 1.2.2 Motion Representation Algorithms 5 1.2.3 Safety-guaranteed Motion Representation Algorithms 7 1.3 Research Objectives and Contributions 7 1.3.1 Motion Generalization in Motion Representation Algorithm 9 1.3.2 Motion Generalization with Safety Guarantee 9 1.3.3 Motion Generalization for Complex Missions 10 1.4 Thesis Organization 11 2 Background 12 2.1 DMPs 12 2.2 Mobile Manipulation Systems 13 2.2.1 Single Mobile Manipulation 14 2.2.2 Cooperative Mobile Manipulations 14 2.3 Experimental Setup 17 2.3.1 Test-beds for Aerial Manipulators 17 2.3.2 Test-beds for Robot Manipulators with Ground Vehicles 17 3 Motion Generalization in Motion Representation Algorithm 22 3.1 Parametric Dynamic Movement Primitives 22 3.2 Generalization Process in PDMPs 26 3.2.1 Environmental Parameters 26 3.2.2 Mapping Function 26 3.3 Simulation Results 29 3.3.1 Two-dimensional Hurdling Motion 29 3.3.2 Cooperative Aerial Transportation 30 4 Motion Generalization with Safety Guarantee 36 4.1 Safety Criterion in Style Parameter 36 4.2 Demonstration Management 39 4.3 Simulation Validation 42 4.3.1 Two-dimensional Hurdling Motion 46 4.3.2 Cooperative Aerial Transportation 47 5 Motion Generalization for Complex Missions 51 5.1 Overall Structure of Seg-PDMPs 51 5.2 Motion Segments 53 5.3 Phase-decision Process 54 5.4 Seg-PDMPs for Single Phase 54 5.5 Simulation Results 55 5.5.1 Initial/terminal Offsets 56 5.5.2 Style Generalization 59 5.5.3 Recombination 61 6 Experimental Validation and Results 63 6.1 Cooperative Aerial Transportation 63 6.2 Cooperative Mobile Hang-dry Mission 70 6.2.1 Demonstrations 70 6.2.2 Simulation Validation 72 6.2.3 Experimental Results 78 7 Conclusions 82 Abstract (in Korean) 93Docto

    Multi-Robot Object Transport Motion Planning with a Deformable Sheet

    Full text link
    Using a deformable sheet to handle objects is convenient and found in many practical applications. For object manipulation through a deformable sheet that is held by multiple mobile robots, it is a challenging task to model the object-sheet interactions. We present a computational model and algorithm to capture the object position on the deformable sheet with changing robotic team formations. A virtual variable cables model (VVCM) is proposed to simplify the modeling of the robot-sheet-object system. With the VVCM, we further present a motion planner for the robotic team to transport the object in a three-dimensional (3D) cluttered environment. Simulation and experimental results with different robot team sizes show the effectiveness and versatility of the proposed VVCM. We also compare and demonstrate the planning results to avoid the obstacle in 3D space with the other benchmark planner.Comment: 8 pages, 10 figures, accepted by RAL&CASE 2022 in June 24, 202

    Collaborative Trolley Transportation System with Autonomous Nonholonomic Robots

    Full text link
    Cooperative object transportation using multiple robots has been intensively studied in the control and robotics literature, but most approaches are either only applicable to omnidirectional robots or lack a complete navigation and decision-making framework that operates in real time. This paper presents an autonomous nonholonomic multi-robot system and an end-to-end hierarchical autonomy framework for collaborative luggage trolley transportation. This framework finds kinematic-feasible paths, computes online motion plans, and provides feedback that enables the multi-robot system to handle long lines of luggage trolleys and navigate obstacles and pedestrians while dealing with multiple inherently complex and coupled constraints. We demonstrate the designed collaborative trolley transportation system through practical transportation tasks, and the experiment results reveal their effectiveness and reliability in complex and dynamic environments

    Underwater intervention robotics: An outline of the Italian national project Maris

    Get PDF
    The Italian national project MARIS (Marine Robotics for Interventions) pursues the strategic objective of studying, developing, and integrating technologies and methodologies to enable the development of autonomous underwater robotic systems employable for intervention activities. These activities are becoming progressively more typical for the underwater offshore industry, for search-and-rescue operations, and for underwater scientific missions. Within such an ambitious objective, the project consortium also intends to demonstrate the achievable operational capabilities at a proof-of-concept level by integrating the results with prototype experimental systems
    • โ€ฆ
    corecore