190 research outputs found

    Localization and security algorithms for wireless sensor networks and the usage of signals of opportunity

    Get PDF
    In this dissertation we consider the problem of localization of wireless devices in environments and applications where GPS (Global Positioning System) is not a viable option. The _x000C_rst part of the dissertation studies a novel positioning system based on narrowband radio frequency (RF) signals of opportunity, and develops near optimum estimation algorithms for localization of a mobile receiver. It is assumed that a reference receiver (RR) with known position is available to aid with the positioning of the mobile receiver (MR). The new positioning system is reminiscent of GPS and involves two similar estimation problems. The _x000C_rst is localization using estimates of time-di_x000B_erence of arrival (TDOA). The second is TDOA estimation based on the received narrowband signals at the RR and the MR. In both cases near optimum estimation algorithms are developed in the sense of maximum likelihood estimation (MLE) under some mild assumptions, and both algorithms compute approximate MLEs in the form of a weighted least-squares (WLS) solution. The proposed positioning system is illustrated with simulation studies based on FM radio signals. The numerical results show that the position errors are comparable to those of other positioning systems, including GPS. Next, we present a novel algorithm for localization of wireless sensor networks (WSNs) called distributed randomized gradient descent (DRGD), and prove that in the case of noise-free distance measurements, the algorithm converges and provides the true location of the nodes. For noisy distance measurements, the convergence properties of DRGD are discussed and an error bound on the location estimation error is obtained. In contrast to several recently proposed methods, DRGD does not require that blind nodes be contained in the convex hull of the anchor nodes, and can accurately localize the network with only a few anchors. Performance of DRGD is evaluated through extensive simulations and compared with three other algorithms, namely the relaxation-based second order cone programming (SOCP), the simulated annealing (SA), and the semi-de_x000C_nite programing (SDP) procedures. Similar to DRGD, SOCP and SA are distributed algorithms, whereas SDP is centralized. The results show that DRGD successfully localizes the nodes in all the cases, whereas in many cases SOCP and SA fail. We also present a modi_x000C_cation of DRGD for mobile WSNs and demonstrate the e_x000E_cacy of DRGD for localization of mobile networks with several simulation results. We then extend this method for secure localization in the presence of outlier distance measurements or distance spoo_x000C_ng attacks. In this case we present a centralized algorithm to estimate the position of the nodes in WSNs, where outlier distance measurements may be present

    Collaborative autonomy in heterogeneous multi-robot systems

    Get PDF
    As autonomous mobile robots become increasingly connected and widely deployed in different domains, managing multiple robots and their interaction is key to the future of ubiquitous autonomous systems. Indeed, robots are not individual entities anymore. Instead, many robots today are deployed as part of larger fleets or in teams. The benefits of multirobot collaboration, specially in heterogeneous groups, are multiple. Significantly higher degrees of situational awareness and understanding of their environment can be achieved when robots with different operational capabilities are deployed together. Examples of this include the Perseverance rover and the Ingenuity helicopter that NASA has deployed in Mars, or the highly heterogeneous robot teams that explored caves and other complex environments during the last DARPA Sub-T competition. This thesis delves into the wide topic of collaborative autonomy in multi-robot systems, encompassing some of the key elements required for achieving robust collaboration: solving collaborative decision-making problems; securing their operation, management and interaction; providing means for autonomous coordination in space and accurate global or relative state estimation; and achieving collaborative situational awareness through distributed perception and cooperative planning. The thesis covers novel formation control algorithms, and new ways to achieve accurate absolute or relative localization within multi-robot systems. It also explores the potential of distributed ledger technologies as an underlying framework to achieve collaborative decision-making in distributed robotic systems. Throughout the thesis, I introduce novel approaches to utilizing cryptographic elements and blockchain technology for securing the operation of autonomous robots, showing that sensor data and mission instructions can be validated in an end-to-end manner. I then shift the focus to localization and coordination, studying ultra-wideband (UWB) radios and their potential. I show how UWB-based ranging and localization can enable aerial robots to operate in GNSS-denied environments, with a study of the constraints and limitations. I also study the potential of UWB-based relative localization between aerial and ground robots for more accurate positioning in areas where GNSS signals degrade. In terms of coordination, I introduce two new algorithms for formation control that require zero to minimal communication, if enough degree of awareness of neighbor robots is available. These algorithms are validated in simulation and real-world experiments. The thesis concludes with the integration of a new approach to cooperative path planning algorithms and UWB-based relative localization for dense scene reconstruction using lidar and vision sensors in ground and aerial robots

    Localization Of Sensors In Presence Of Fading And Mobility

    Get PDF
    The objective of this dissertation is to estimate the location of a sensor through analysis of signal strengths of messages received from a collection of mobile anchors. In particular, a sensor node determines its location from distance measurements to mobile anchors of known locations. We take into account the uncertainty and fluctuation of the RSS as a result of fading and take into account the decay of the RSS which is proportional to the transmitter-receiver distance power raised to the PLE. The objective is to characterize the channel in order to derive accurate distance estimates from RSS measurements and then utilize the distance estimates in locating the sensors. To characterize the channel, two techniques are presented for the mobile anchors to periodically estimate the channel\u27s PLE and fading parameter. Both techniques estimate the PLE by solving an equation via successive approximations. The formula in the first is stated directly from MLE analysis whereas in the second is derived from a simple probability analysis. Then two distance estimates are proposed, one based on a derived formula and the other based on the MLE analysis. Then a location technique is proposed where two anchors are sufficient to uniquely locate a sensor. That is, the sensor narrows down its possible locations to two when collects RSS measurements transmitted by a mobile anchor, then uniquely determines its location when given a distance to the second anchor. Analysis shows the PLE has no effect on the accuracy of the channel characterization, the normalized error in the distance estimation is invariant to the estimated distance, and accurate location estimates can be achieved from a moderate sample of RSS measurements

    Target Localization and Tracking in Wireless Sensor Networks

    Get PDF
    This thesis addresses the target localization problem in wireless sensor networks (WSNs) by employing statistical modeling and convex relaxation techniques. The first and the second part of the thesis focus on received signal strength (RSS)- and RSS-angle of arrival (AoA)-based target localization problem, respectively. Both non-cooperative and cooperative WSNs are investigated and various settings of the localization problem are of interest (e.g. known and unknown target transmit power, perfectly and imperfectly known path loss exponent). For all cases, maximum likelihood (ML) estimation problem is first formulated. The general idea is to tightly approximate the ML estimator by another one whose global solution is a close representation of the ML solution, but is easily obtained due to greater smoothness of the derived objective function. By applying certain relaxations, the solution to the derived estimator is readily obtained through general-purpose solvers. Both centralized (assumes existence of a central node that collects all measurements and carries out all necessary processing for network mapping) and distributed (each target determines its own location by iteratively solving a local representation of the derived estimator) algorithms are described. More specifically, in the case of centralized RSS-based localization, second-order cone programming (SOCP) and semidefinite programming (SDP) estimators are derived by applying SOCP and SDP relaxation techniques in non-cooperative and cooperative WSNs, respectively. It is also shown that the derived SOCP estimator can be extended for distributed implementation in cooperative WSNs. In the second part of the thesis, derivation procedure of a weighted least squares (WLS) estimator by converting the centralized non-cooperative RSS-AoA localization problem into a generalized trust region sub-problem (GTRS) framework, and an SDP estimator by applying SDP relaxations to the centralized cooperative RSS-AoA localization problem are described. Furthermore, a distributed SOCP estimator is developed, and an extension of the centralized WLS estimator for non-cooperative WSNs to distributed conduction in cooperative WSNs is also presented. The third part of the thesis is committed to RSS-AoA-based target tracking problem. Both cases of target tracking with fixed/static anchors and mobile sensors are investigated. First, the non-linear measurement model is linearized by applying Cartesian to polar coordinates conversion. Prior information extracted from target transition model is then added to the derived model, and by following maximum a posteriori (MAP) criterion, a MAP algorithm is developed. Similarly, by taking advantage of the derived model and the prior knowledge, Kalman filter (KF) algorithm is designed. Moreover, by allowing sensor mobility, a simple navigation routine for sensors’ movement management is described, which significantly enhances the estimation accuracy of the presented algorithms even for a reduced number of sensors. The described algorithms are assessed and validated through simulation results and real indoor measurements

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&

    A framework for evaluating countermeasures against sybil attacks in wireless sensor networks

    Get PDF
    Although Wireless Sensor Networks (WSNs) have found a niche in numerous applications, they are constrained by numerous factors. One of these important factors is security in WSNs. There are various types of security attacks that WSNs are susceptible to. The focus of this study is centred on Sybil attacks, a denial of service attack. In this type of attack, rogue nodes impersonate valid nodes by falsely claiming to possess authentic identities, thereby rendering numerous core WSN operations ineffective. The diverse nature of existing solutions poses a difficult problem for system engineers wanting to employ a best fit countermeasure. This problem is the largely unanswered question posed to all system engineers and developers alike whose goal is to design/develop a secure WSN. Resolving this dilemma proves to be quite a fascinating task, since there are numerous factors to consider and more especially one cannot assume that every application is affected by all identified factors. A framework methodology presented in this study addresses the abovementioned challenges by evaluating countermeasure effectiveness based on theoretical and practical security factors. Furthermore, a process is outlined to determine the application’s engineering requirements and the framework also suggests what security components the system engineer ought to incorporate into the application, depending on the application’s risk profile. The framework then numerically aligns these considerations, ensuring an accurate and fairly unbiased best fit countermeasure selection. Although the framework concentrates on Sybil countermeasures, the methodology can be applied to other classes of countermeasures since it answers the question of how to objectively study and compare security mechanisms that are both diverse and intended for different application environments. The report documents the design and development of a comparative framework that can be used to evaluate countermeasures against Sybil attacks in wireless sensor networks based on various criteria that will be discussed in detail. This report looks briefly at the aims and description of the research. Following this, a literature survey on the body of knowledge concerning WSN security and a discussion on the proposed methodology of a specific design approach are given. Assumptions and a short list of factors that were considered are then described. Metrics, the taxonomy for WSN countermeasures, the framework and a formal model are developed. Risk analysis and the best fit methodology are also discussed. Finally, the results and recommendations are shown for the research, after which the document is concluded.Dissertation (MEng)--University of Pretoria, 2011.Electrical, Electronic and Computer Engineeringunrestricte
    • …
    corecore