284 research outputs found

    Resource Allocation for Network-Integrated Device-to-Device Communications Using Smart Relays

    Full text link
    With increasing number of autonomous heterogeneous devices in future mobile networks, an efficient resource allocation scheme is required to maximize network throughput and achieve higher spectral efficiency. In this paper, performance of network-integrated device-to-device (D2D) communication is investigated where D2D traffic is carried through relay nodes. An optimization problem is formulated for allocating radio resources to maximize end-to-end rate as well as conversing QoS requirements for cellular and D2D user equipment under total power constraint. Numerical results show that there is a distance threshold beyond which relay-assisted D2D communication significantly improves network performance when compared to direct communication between D2D peers

    Wireless powered D2D communications underlying cellular networks: design and performance of the extended coverage

    Get PDF
    Because of the short battery life of user equipments (UEs), and the requirements for better quality of service have been more demanding, energy efficiency (EE) has emerged to be important in device-to-device (D2D) communications. In this paper, we consider a scenario, in which D2D UEs in a half-duplex decode-and-forward cognitive D2D communication underlying a traditional cellular network harvest energy and communicate with each other by using the spectrum allocated by the base station (BS). In order to develop a practical design, we achieve the optimal time switching (TS) ratio for energy harvesting. Besides that, we derive closed-form expressions for outage probability, sum-bit error rate, average EE and instantaneous rate by considering the scenario when installing the BS near UEs or far from the UEs. Two communication types are enabled by TS-based protocol. Our numerical and simulation results prove that the data rate of the D2D communication can be significantly enhanced.Web of Science58439939
    corecore