1,867 research outputs found

    Data Deluge in Astrophysics: Photometric Redshifts as a Template Use Case

    Get PDF
    Astronomy has entered the big data era and Machine Learning based methods have found widespread use in a large variety of astronomical applications. This is demonstrated by the recent huge increase in the number of publications making use of this new approach. The usage of machine learning methods, however is still far from trivial and many problems still need to be solved. Using the evaluation of photometric redshifts as a case study, we outline the main problems and some ongoing efforts to solve them.Comment: 13 pages, 3 figures, Springer's Communications in Computer and Information Science (CCIS), Vol. 82

    Towards More Precise Photometric Redshifts: Calibration Via CCD Photometry

    Get PDF
    We present the initial results from a deep, multi-band photometric survey of selected high Galactic latitude redshift fields. Previous work using the photographic data of Koo and Kron demonstrated that the distribution of galaxies in the multi-dimensional flux space U B R I is nearly planar. The position of a galaxy within this plane is determined by its redshift, luminosity and spectral type. Using recently acquired deep CCD photometry in existing, published redshift fields, we have redetermined the distribution of galaxies in this four-dimensional magnitude space. Furthermore, from our CCD photometry and the published redshifts, we have quantified the photometric-redshift relation within the standard AB magnitude system. This empirical relation has a measured dispersion of approximately 0.02 for z < 0.4. With this work we are reaching the asymptotic intrinsic dispersions that were predicted from simulated distributions of galaxy colors.Comment: submitted to the Astrophysical Journal Letter

    Searching High Redshift Large-Scale Structures: Photometry of Four Fields Around Quasar Pairs at z~1

    Full text link
    We have studied the photometric properties of four fields around the high-redshift quasar pairs QP1310+0007, QP1355-0032, QP0110-0219, and QP0114-3140 at z ~ 1 with the aim of identifying large-scale structures- galaxy clusters or groups- around them. This sample was observed with GMOS in Gemini North and South telescopes in the g', r', i', and z' bands, and our photometry is complete to a limiting magnitude of i' ~ 24 mag (corresponding to ~ M*_i' + 2 at the redshift of the pairs). Our analysis reveals that QP0110-0219 shows very strong and QP1310+0007 and QP1355-0032 show some evidence for the presence of rich galaxy clusters in direct vicinity of the pairs. On the other hand, QP0114-3140 could be an isolated pair in a poor environment. This work suggest that z ~ 1 quasar pairs are excellent tracers of high density environments and this same technique may be useful to find clusters at higher redshifts.Comment: 29 pages, 7 figures, ApJ accepted. Added one figure and 3 references. Some paragraphs was rewritten in sections 1, 3, 5, and 6, as suggested by refere

    The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field

    Full text link
    The Hubble Deep Field (HDF) is the deepest set of multicolor optical photometric observations ever undertaken, and offers a valuable data set with which to study galaxy evolution. Combining the optical WFPC2 data with ground-based near-infrared photometry, we derive photometrically estimated redshifts for HDF galaxies with J<23.5. We demonstrate that incorporating the near-infrared data reduces the uncertainty in the estimated redshifts by approximately 40% and is required to remove systematic uncertainties within the redshift range 1<z<2. Utilizing these photometric redshifts, we determine the evolution of the comoving ultraviolet (2800 A) luminosity density (presumed to be proportional to the global star formation rate) from a redshift of z=0.5 to z=2. We find that the global star formation rate increases rapidly with redshift, rising by a factor of 12 from a redshift of zero to a peak at z~1.5. For redshifts beyond 1.5, it decreases monotonically. Our measures of the star formation rate are consistent with those found by Lilly et al. (1996) from the CFRS at z 2, and bridge the redshift gap between those two samples. The overall star formation or metal enrichment rate history is consistent with the predictions of Pei and Fall (1995) based on the evolving HI content of Lyman-alpha QSO absorption line systems.Comment: Latex format, 10 pages, 3 postscript figures. Accepted for publication in Ap J Letter

    Identifications of FIRST radio sources in the NOAO Deep-Wide Field Survey

    Get PDF
    In this paper we present the results of an optical and near infrared identification of 514 radio sources from the FIRST survey (Faint Images of the Radio Sky Survey at Twenty centimeters) with a flux-density limit of 1 mJy in the NOAO Deep-Wide Field Survey (NDWFS) Bootes field. Using optical (Bw, R, I) and K band data with approximate limits of Bw ~ 25.5mag, R ~ 25.8 mag, I ~25.5 mag and K~19.4 mag, optical counterparts have been identified for 378 of 514 FIRST radio sources. This corresponds to an identification rate of 34% in four bands (BwRIK), 60% in optical bands (BwRI) and 74% in I band. Photometric redshifts for these sources have been computed using the hyperz code. The inclusion of quasar template spectra in hyperz is investigated. We note that the photometric data are, in many cases, best matched to templates with very short star-formation timescales and the inferred ages of identified galaxies depend strongly on the assumptions about the star-formation timescale. The redshifts obtained are fairly consistent with those expected from the K-z relation for brighter radio sources but there is more scatter in the K-z diagram at z<1.Comment: 9 pages, 7 figures. Accepted for publication in Astronomische Nachrichten; will appear in the issue 5/32

    Lyman Break Galaxies at z~5: Rest-Frame UV Spectra. III

    Get PDF
    We present results of optical spectroscopic observations of candidates of Lyman Break Galaxies (LBGs) at z5z \sim 5 in the region including the GOODS-N and the J0053+1234 region by using GMOS-N and GMOS-S, respectively. Among 25 candidates, five objects are identified to be at z5z \sim 5 (two of them were already identified by an earlier study) and one object very close to the color-selection window turned out to be a foreground galaxy. With this spectroscopically identified sample and those from previous studies, we derived the lower limits on the number density of bright (MUV<22.0M_{UV}<-22.0 mag) LBGs at z5z \sim 5. These lower limits are comparable to or slightly smaller than the number densities of UV luminosity functions (UVLFs) that show the smaller number density among z5z \sim 5 UVLFs in literature. However, by considering that there remain many LBG candidates without spectroscopic observations, the number density of bright LBGs is expected to increase by a factor of two or more. The evidence for the deficiency of UV luminous LBGs with large Lyα\alpha equivalent widths was reinforced. We discuss possible causes for the deficiency and prefer the interpretation of dust absorption.Comment: 28 pages, 5 figures, accepted for publication in Ap

    Low X-ray Luminosity Galaxy Clusters. III: Weak Lensing Mass Determination at 0.18 << z << 0.70

    Get PDF
    This is the third of a series of papers of low X-ray luminosity galaxy clusters. In this work we present the weak lensing analysis of eight clusters, based on observations obtained with the Gemini Multi-Object Spectrograph in the gg', rr' and ii' passbands. For this purpose, we have developed a pipeline for the lensing analysis of ground-based images and we have performed tests applied to simulated data. We have determined the masses of seven galaxy clusters, six of them measured for the first time. For the four clusters with availably spectroscopic data, we find a general agreement between the velocity dispersions obtained via weak lensing assuming a Singular Isothermal Sphere profile, and those obtained from the redshift distribution of member galaxies. The correlation between our weak lensing mass determinations and the X-ray luminosities are suitably fitted by other observations of the MLXM-L_{X} relation and models

    The Statistical Approach to Quantifying Galaxy Evolution

    Get PDF
    Studies of the distribution and evolution of galaxies are of fundamental importance to modern cosmology; these studies, however, are hampered by the complexity of the competing effects of spectral and density evolution. Constructing a spectroscopic sample that is able to unambiguously disentangle these processes is currently excessively prohibitive due to the observational requirements. This paper extends and applies an alternative approach that relies on statistical estimates for both distance (z) and spectral type to a deep multi-band dataset that was obtained for this exact purpose. These statistical estimates are extracted directly from the photometric data by capitalizing on the inherent relationships between flux, redshift, and spectral type. These relationships are encapsulated in the empirical photometric redshift relation which we extend to z ~ 1.2, with an intrinsic dispersion of dz = 0.06. We also develop realistic estimates for the photometric redshift error for individual objects, and introduce the utilization of the galaxy ensemble as a tool for quantifying both a cosmological parameter and its measured error. We present deep, multi-band, optical number counts as a demonstration of the integrity of our sample. Using the photometric redshift and the corresponding redshift error, we can divide our data into different redshift intervals and spectral types. As an example application, we present the number redshift distribution as a function of spectral type.Comment: 40 pages (LaTex), 21 Figures, requires aasms4.sty; Accepted by the Astrophysical Journa
    corecore