957 research outputs found

    Large-scale optimization : combining co-operative coevolution and fitness inheritance

    Get PDF
    Large-scale optimization, here referring mainly to problems with many design parameters remains a serious challenge for optimization algorithms. When the problem at hand does not succumb to analytical treatment (an overwhelmingly common place situation), the engineering and adaptation of stochastic black box optimization methods tends to be a favoured approach, particularly the use of Evolutionary Algorithms (EAs). In this context, many approaches are currently under investigation for accelerating performance on large-scale problems, and we focus on two of those in this research. The first is co-operative co-evolution (CC), where the strategy is to successively optimize only subsets of the design parameters at a time, keeping the remainder fixed, with an organized approach to managing and reconciling these subspace optimization. The second is fitness inheritance (FI), which is essentially a very simple surrogate model strategy, in which, with some probability, the fitness of a solution is simply guessed to be a simple function of the finesses of that solution’s parents. Both CC and FI have been found successful on nontrivial and multiple test cases, and they use fundamentally distinct strategies. In this thesis, we explored the extent to which both of these strategies can be used to provide additional benefits. In addition to combining CC and FI, this thesis also introduces a new FI scheme which further improves the performance of CC-FI. We show that the new algorithm CC-FI is highly effective for solving problems, especially when the new FI scheme is used. In the thesis, we also explored two basic adaptive parameter setting strategies for the FI component. We found that engineering FI (and CC, where it was otherwise not present) into these algorithms led to good performance and results

    Hybrid quantum-classical heuristic for the bin packing problem

    Get PDF
    Optimization problems is one of the most challenging applications of quantum computers, as well as one of the most relevants. As a consequence, it has attracted huge efforts to obtain a speedup over classical algorithms using quantum resources. Up to now, many problems of different nature have been addressed through the perspective of this revolutionary computation paradigm, but there are still many open questions. In this work, a hybrid classical-quantum approach is presented for dealing with the one-dimensional Bin Packing Problem (1dBPP). The algorithm comprises two modules, each one designed for being executed in different computational ecosystems. First, a quantum subroutine seeks a set of feasible bin configurations of the problem at hand. Secondly, a classical computation subroutine builds complete solutions to the problem from the subsets given by the quantum subroutine. Being a hybrid solver, we have called our method H-BPP. To test our algorithm, we have built 18 different 1dBPP instances as a benchmarking set, in which we analyse the fitness, the number of solutions and the performance of the QC subroutine. Based on these figures of merit we verify that H-BPP is a valid technique to address the 1dBPP.QUANTEK project (ELKARTEK program from the Basque Government, expedient no. KK-2021/00070) Spanish Ramón y Cajal Grant RYC-2020-030503- I QMiCS (820505) and OpenSuperQ (820363) of the EU Flagship on Quantum Technologies EU FET Open project Quromorphic (828826) and EPIQUS (899368

    CHAMP: Creating Heuristics via Many Parameters for online bin packing

    Get PDF
    The online bin packing problem is a well-known bin packing variant which requires immediate decisions to be made for the placement of a lengthy sequence of arriving items of various sizes one at a time into fixed capacity bins without any overflow. The overall goal is maximising the average bin fullness. We investigate a ‘policy matrix’ representation which assigns a score for each decision option independently and the option with the highest value is chosen for one dimensional online bin packing. A policy matrix might also be considered as a heuristic with many parameters, where each parameter value is a score. We hence investigate a framework which can be used for creating heuristics via many parameters. The proposed framework combines a Genetic Algorithm optimiser, which searches the space of heuristics in policy matrix form, and an online bin packing simulator, which acts as the evaluation function. The empirical results indicate the success of the proposed approach, providing the best solutions for almost all item sequence generators used during the experiments. We also present a novel fitness landscape analysis on the search space of policies. This study hence gives evidence of the potential for automated discovery by intelligent systems of powerful heuristics for online problems; reducing the need for expensive use of human expertise

    QAL-BP: An Augmented Lagrangian Quantum Approach for Bin Packing Problem

    Full text link
    The bin packing is a well-known NP-Hard problem in the domain of artificial intelligence, posing significant challenges in finding efficient solutions. Conversely, recent advancements in quantum technologies have shown promising potential for achieving substantial computational speedup, particularly in certain problem classes, such as combinatorial optimization. In this study, we introduce QAL-BP, a novel Quadratic Unconstrained Binary Optimization (QUBO) formulation designed specifically for bin packing and suitable for quantum computation. QAL-BP utilizes the augmented Lagrangian method to incorporate the bin packing constraints into the objective function while also facilitating an analytical estimation of heuristic, but empirically robust, penalty multipliers. This approach leads to a more versatile and generalizable model that eliminates the need for empirically calculating instance-dependent Lagrangian coefficients, a requirement commonly encountered in alternative QUBO formulations for similar problems. To assess the effectiveness of our proposed approach, we conduct experiments on a set of bin-packing instances using a real Quantum Annealing device. Additionally, we compare the results with those obtained from two different classical solvers, namely simulated annealing and Gurobi. The experimental findings not only confirm the correctness of the proposed formulation but also demonstrate the potential of quantum computation in effectively solving the bin-packing problem, particularly as more reliable quantum technology becomes available.Comment: 14 pages, 4 figures, 1 tabl

    Algorithms for the Bin Packing Problem with Scenarios

    Full text link
    This paper presents theoretical and practical results for the bin packing problem with scenarios, a generalization of the classical bin packing problem which considers the presence of uncertain scenarios, of which only one is realized. For this problem, we propose an absolute approximation algorithm whose ratio is bounded by the square root of the number of scenarios times the approximation ratio for an algorithm for the vector bin packing problem. We also show how an asymptotic polynomial-time approximation scheme is derived when the number of scenarios is constant. As a practical study of the problem, we present a branch-and-price algorithm to solve an exponential model and a variable neighborhood search heuristic. To speed up the convergence of the exact algorithm, we also consider lower bounds based on dual feasible functions. Results of these algorithms show the competence of the branch-and-price in obtaining optimal solutions for about 59% of the instances considered, while the combined heuristic and branch-and-price optimally solved 62% of the instances considered

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Adaptive Search and Constraint Optimisation in Engineering Design

    Get PDF
    The dissertation presents the investigation and development of novel adaptive computational techniques that provide a high level of performance when searching complex high-dimensional design spaces characterised by heavy non-linear constraint requirements. The objective is to develop a set of adaptive search engines that will allow the successful negotiation of such spaces to provide the design engineer with feasible high performance solutions. Constraint optimisation currently presents a major problem to the engineering designer and many attempts to utilise adaptive search techniques whilst overcoming these problems are in evidence. The most widely used method (which is also the most general) is to incorporate the constraints in the objective function and then use methods for unconstrained search. The engineer must develop and adjust an appropriate penalty function. There is no general solution to this problem neither in classical numerical optimisation nor in evolutionary computation. Some recent theoretical evidence suggests that the problem can only be solved by incorporating a priori knowledge into the search engine. Therefore, it becomes obvious that there is a need to classify constrained optimisation problems according to the degree of available or utilised knowledge and to develop search techniques applicable at each stage. The contribution of this thesis is to provide such a view of constrained optimisation, starting from problems that handle the constraints on the representation level, going through problems that have explicitly defined constraints (i.e., an easily computed closed form like a solvable equation), and ending with heavily constrained problems with implicitly defined constraints (incorporated into a single simulation model). At each stage we develop applicable adaptive search techniques that optimally exploit the degree of available a priori knowledge thus providing excellent quality of results and high performance. The proposed techniques are tested using both well known test beds and real world engineering design problems provided by industry.British Aerospace, Rolls Royce and Associate

    Human derived heuristic enhancement of an evolutionary algorithm for the 2D Bin Packing Problem

    Get PDF
    Parallel Problem Solving from Nature – PPSN XVI. 16th International Conference, PPSN 2020, Leiden, The Netherlands, 5 - 9 September 2020This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this recordThe 2D Bin-Packing Problem (2DBPP) is an NP-Hard combinatorial optimisation problem with many real-world analogues. Fully deterministic methods such as the well-known Best Fit and First Fit heuristics, stochastic methods such as Evolutionary Algorithms (EAs), and hybrid EAs that combine the deterministic and stochastic approaches have all been applied to the problem. Combining derived human expertise with a hybrid EA offers another potential approach. In this work, the moves of humans playing a gamified version of the 2DBPP were recorded and four different Human-Derived Heuristics (HDHs) were created by learning the underlying heuristics employed by those players. Each HDH used a decision tree in place of the mutation operator in the EA. To test their effectiveness, these were compared against hybrid EAs utilising Best Fit or First Fit heuristics as well as a standard EA using a random swap mutation modified with a Next Fit heuristic if the mutation was infeasible. The HDHs were shown to outperform the standard EA and were faster to converge than – but ultimately outperformed by – the First Fit and Best Fit heuristics. This shows that humans can create competitive heuristics through gameplay and helps to understand the role that heuristics can play in stochastic search.Engineering and Physical Sciences Research Council (EPSRC

    Novel approaches to container loading: from heuristics to hybrid tabu search

    Get PDF
    A thesis submitted for the degree of Doctor of Philosophy of the University ofBedford shireThis work investigates new approaches to the container loading problem which address the issue of how to load three-dimensional, rectangular items (e.g. boxes) into the container in such a way that maximum utilisation is made of the container space. This problem occurs in several industry sectors where the loading approach places cargo effectively into aeroplanes, ships, trailers or trucks in order to save considerable cost. In carrying out this work, the investigation starts by developing a new heuristic approach to the two-dimensional bin packing problem, which has lower complexity than container loading in the aspects of constraints and geometry. A novel approach, including the heuristic strategies and handling method for remaining areas, is developed that can produce good results when testing with benchmark and real world data. Based on the research for two-dimensional bin packing, a novel heuristic approach is developed to deal with the container loading problem with some practical constraints. The heuristic approach to container loading also includes heuristic strategies and the handling of remaining spaces. The heuristic strategies construct effective loading arrangements where combinations of identical or different box types are loaded in blocks. The handling method for remaining spaces further improves the loading arrangements through the representation, partitioning and merging of remaining spaces. The heuristic approach obtains better volume utilisation and the highest stability compared with other published heuristic approaches. However, it does not achieve as high a volume utilisation as metaheuristic approaches, e.g. genetic algorithms and tabu search.To improve volume utilisation, a new hybrid heuristic approach to the container loading problem is further developed based on the tabu search technique which covers the encoding, evaluation criterion and configuration of neighbourhood and candidate solutions. The heuristic strategies as well as the handling method for remaining spaces developed in the heuristic approach are used in this new hybrid tabu search approach. It is shown that the hybrid approach has better volume utilisation than the published approaches under the condition that all loaded boxes with one hundred per cent support from below. In addition, the experimental results show that both the heuristic and hybrid tabu search approaches can also be applied to the multiple container loading problem
    corecore