47 research outputs found

    Impact of the Scheduling Strategy in Heterogeneous Systems That Provide Co-Scheduling

    Get PDF
    ABSTRACT In recent years, the number of processing units per compute node has been increasing. In order to utilize all or most of the available resources of a high-performance computing cluster, at least some of its nodes will have to be shared by several applications at the same time. Yet, even if jobs are co-scheduled on a node, it can happen that high performance resources remain idle, although there are jobs that could make use of them (e. g. if the resource was temporarily blocked when the job was started). Heterogeneous schedulers, which schedule tasks for different devices, can bind jobs to resources in a way that can significantly reduce the idle time. Typically, those schedulers make their decisions based on a static strategy. In this paper, we investigate the impact if a heterogeneous scheduler allows modifications of the strategies at runtime. For a set of applications, we determine the makespan and show how it is influenced by four different scheduling strategies. A well-chosen strategy can result in a speedup of more the 2.5 in comparison to other strategies

    Towards multiprogrammed GPUs

    Get PDF
    Programmable Graphics Processing Units (GPUs) have recently become the most pervasitheve massively parallel processors. They have come a long way, from fixed function ASICs designed to accelerate graphics tasks to a programmable architecture that can also execute general-purpose computations. Because of their performance and efficiency, an increasing amount of software is relying on them to accelerate data parallel and computationally intensive sections of code. They have earned a place in many systems, from low power mobile devices to the biggest data centers in the world. However, GPUs are still plagued by the fact that they essentially have no multiprogramming support, resulting in low system performance if the GPU is shared among multiple programs. In this dissertation we set to provide the rich GPU multiprogramming support by improving the multitasking capabilities and increasing the virtual memory functionality and performance. The main issue hindering the multitasking support in GPUs is the nonpreemptive execution of GPU kernels. Here we propose two preemption mechanisms with dierent design philosophies, that can be used by a scheduler to preempt execution on GPU cores and make room for some other process. We also argue for the spatial sharing of the GPU and propose a concrete hardware scheduler implementation that dynamically partitions the GPU cores among running kernels, according to their set priorities. Opposing the assumptions made in the related work, we demonstrate that preemptive execution is feasible and the desired approach to GPU multitasking. We further show improved system fairness and responsiveness with our scheduling policy. We also pinpoint that at the core of the insufficient virtual memory support lies the exceptions handling mechanism used by modern GPUs. Currently, GPUs offload the actual exception handling work to the CPU, while the faulting instruction is stalled in the GPU core. This stall-on-fault model prevents some of the virtual memory features and optimizations and is especially harmful in multiprogrammed environments because it prevents context switching the GPU unless all the in-flight faults are resolved. In this disseritation, we propose three GPU core organizations with varying performance-complexity trade-off that get rid of the stall-on-fault execution and enable preemptible exceptions on the GPU (i.e., the faulting instruction can be squashed and restarted later). Building on this support, we implement two use cases and demonstrate their utility. One is a scheme that performs context switch of the faulted threads and tries to find some other useful work to do in the meantime, hiding the latency of the fault and improving the system performance. The other enables the fault handling code to run locally, on the GPU, instead of relying on the CPU offloading and show that the local fault handling can also improve performance.Las Unidades de Procesamiento de Gráficos Programables (GPU, por sus siglas en inglés) se han convertido recientemente en los procesadores masivamente paralelos más difundidos. Han recorrido un largo camino desde ASICs de función fija diseñados para acelerar tareas gráficas, hasta una arquitectura programable que también puede ejecutar cálculos de propósito general. Debido a su rendimiento y eficiencia, una cantidad creciente de software se basa en ellas para acelerar las secciones de código computacionalmente intensivas que disponen de paralelismo de datos. Se han ganado un lugar en muchos sistemas, desde dispositivos móviles de baja potencia hasta los centros de datos más grandes del mundo. Sin embargo, las GPUs siguen plagadas por el hecho de que esencialmente no tienen soporte de multiprogramación, lo que resulta en un bajo rendimiento del sistema si la GPU se comparte entre múltiples programas. En esta disertación nos centramos en proporcionar soporte de multiprogramación para GPUs mediante la mejora de las capacidades de multitarea y del soporte de memoria virtual. El principal problema que dificulta el soporte multitarea en las GPUs es la ejecución no apropiativa de los núcleos de la GPU. Proponemos dos mecanismos de apropiación con diferentes filosofías de diseño, que pueden ser utilizados por un planificador para apropiarse de los núcleos de la GPU y asignarlos a otros procesos. También abogamos por la división espacial de la GPU y proponemos una implementación concreta de un planificador hardware que divide dinámicamente los núcleos de la GPU entre los kernels en ejecución, de acuerdo con sus prioridades establecidas. Oponiéndose a las suposiciones hechas por otros en trabajos relacionados, demostramos que la ejecución apropiativa es factible y el enfoque deseado para la multitarea en GPUs. Además, mostramos una mayor equidad y capacidad de respuesta del sistema con nuestra política de asignación de núcleos de la GPU. También señalamos que la causa principal del insuficiente soporte de la memoria virtual en las GPUs es el mecanismo de manejo de excepciones utilizado por las GPUs modernas. En la actualidad, las GPUs descargan el manejo de las excepciones a la CPU, mientras que la instrucción que causo la fallada se encuentra esperando en el núcleo de la GPU. Este modelo de bloqueo en fallada impide algunas de las funciones y optimizaciones de la memoria virtual y es especialmente perjudicial en entornos multiprogramados porque evita el cambio de contexto de la GPU a menos que se resuelvan todas las fallas pendientes. En esta disertación, proponemos tres implementaciones del pipeline de los núcleos de la GPU que ofrecen distintos balances de rendimiento-complejidad y permiten la apropiación del núcleo aunque haya excepciones pendientes (es decir, la instrucción que produjo la fallada puede ser reiniciada más tarde). Basándonos en esta nueva funcionalidad, implementamos dos casos de uso para demostrar su utilidad. El primero es un planificador que asigna el núcleo a otros subprocesos cuando hay una fallada para tratar de hacer trabajo útil mientras esta se resuelve, ocultando así la latencia de la fallada y mejorando el rendimiento del sistema. El segundo permite que el código de manejo de las falladas se ejecute localmente en la GPU, en lugar de descargar el manejo a la CPU, mostrando que el manejo local de falladas también puede mejorar el rendimiento.Postprint (published version

    Efficient and portable multi-tasking for heterogeneous systems

    Get PDF
    Modern computing systems comprise heterogeneous designs which combine multiple and diverse architectures on a single system. These designs provide potentials for high performance under reduced power requirements but require advanced resource management and workload scheduling across the available processors. Programmability frameworks, such as OpenCL and CUDA, enable resource management and workload scheduling on heterogeneous systems. These frameworks fully assign the control of resource allocation and scheduling to the application. This design sufficiently serves the needs of dedicated application systems but introduces significant challenges for multi-tasking environments where multiple users and applications compete for access to system resources. This thesis considers these challenges and presents three major contributions that enable efficient multi-tasking on heterogeneous systems. The presented contributions are compatible with existing systems, remain portable across vendors and do not require application changes or recompilation. The first contribution of this thesis is an optimization technique that reduces host-device communication overhead for OpenCL applications. It does this without modification or recompilation of the application source code and is portable across platforms. This work enables efficiency and performance improvements for diverse application workloads found on multi-tasking systems. The second contribution is the design and implementation of a secure, user-space virtualization layer that integrates the accelerator resources of a system with the standard multi-tasking and user-space virtualization facilities of the commodity Linux OS. It enables fine-grained sharing of mixed-vendor accelerator resources and targets heterogeneous systems found in data center nodes and requires no modification to the OS, OpenCL or application. Lastly, the third contribution is a technique and software infrastructure that enable resource sharing control on accelerators, while supporting software managed scheduling on accelerators. The infrastructure remains transparent to existing systems and applications and requires no modifications or recompilation. In enforces fair accelerator sharing which is required for multi-tasking purposes

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing

    High Performance Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systemsThe work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things

    High-Performance and Time-Predictable Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systems The work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things.info:eu-repo/semantics/publishedVersio

    Sharing GPUs for Real-Time Autonomous-Driving Systems

    Get PDF
    Autonomous vehicles at mass-market scales are on the horizon. Cameras are the least expensive among common sensor types and can preserve features such as color and texture that other sensors cannot. Therefore, realizing full autonomy in vehicles at a reasonable cost is expected to entail computer-vision techniques. These computer-vision applications require massive parallelism provided by the underlying shared accelerators, such as graphics processing units, or GPUs, to function “in real time.” However, when computer-vision researchers and GPU vendors refer to “real time,” they usually mean “real fast”; in contrast, certifiable automotive systems must be “real time” in the sense of being predictable. This dissertation addresses the challenging problem of how GPUs can be shared predictably and efficiently for real-time autonomous-driving systems. We tackle this challenge in four steps. First, we investigate NVIDIA GPUs with respect to scheduling, synchronization, and execution. We conduct an extensive set of experiments to infer NVIDIA GPU scheduling rules, which are unfortunately undisclosed by NVIDIA and are beyond access owing to their closed-source software stack. We also expose a list of pitfalls pertaining to CPU-GPU synchronization that can result in unbounded response times of GPU-using applications. Lastly, we examine a fundamental trade-off for designing real-time tasks under different execution options. Overall, our investigation provides an essential understanding of NVIDIA GPUs, allowing us to further model and analyze GPU tasks. Second, we develop a new model and conduct schedulability analysis for GPU tasks. We extend the well-studied sporadic task model with additional parameters that characterize the parallel execution of GPU tasks. We show that NVIDIA scheduling rules are subject to fundamental capacity loss, which implies a necessary total utilization bound. We derive response-time bounds for GPU task systems that satisfy our schedulability conditions. Third, we address an industrial challenge of supplying the throughput performance of computer-vision frameworks to support adequate coverage and redundancy offered by an array of cameras. We re-think the design of convolution neural network (CNN) software to better utilize hardware resources and achieve increased throughput (number of simultaneous camera streams) without any appreciable increase in per-frame latency (camera to CNN output) or reduction of per-stream accuracy. Fourth, we apply our analysis to a finer-grained graph scheduling of a computer-vision standard, OpenVX, which explicitly targets embedded and real-time systems. We evaluate both the analytical and empirical real-time performance of our approach.Doctor of Philosoph
    corecore