446 research outputs found

    Technologies and solutions for location-based services in smart cities: past, present, and future

    Get PDF
    Location-based services (LBS) in smart cities have drastically altered the way cities operate, giving a new dimension to the life of citizens. LBS rely on location of a device, where proximity estimation remains at its core. The applications of LBS range from social networking and marketing to vehicle-toeverything communications. In many of these applications, there is an increasing need and trend to learn the physical distance between nearby devices. This paper elaborates upon the current needs of proximity estimation in LBS and compares them against the available Localization and Proximity (LP) finding technologies (LP technologies in short). These technologies are compared for their accuracies and performance based on various different parameters, including latency, energy consumption, security, complexity, and throughput. Hereafter, a classification of these technologies, based on various different smart city applications, is presented. Finally, we discuss some emerging LP technologies that enable proximity estimation in LBS and present some future research areas

    Survey of location-centric target tracking with mobile elements in wireless sensor networks

    Get PDF
    介绍目标跟踪的过程以及移动跟踪的特点;通过区分目标定位为主的方法和目标探测为主的方法,介绍定位为主的移动式目标跟踪方法(称为目标的移动式定位跟踪; )的研究现状;分析和比较不同方法的特点和应用领域,发现现有方法虽然可以提高跟踪质量、降低网络整体能耗,但是还存在一些问题。基于此,总结目标的移动; 式定位跟踪方法在方法类型、网络结构和节点模型等方面可能存在的研究热点,指出其研究和发展趋势。The basic process of target tracking and the properties of tracking; solutions with mobile elements were introduced. By distinguishing; location-centric methods and detection-centric methods, the current; research status of the location-centric target tracking methods were; reviewed. The properties and application fields of different solutions; were analyzed and compared. Although the existing solutions can; significantly improve tracking quality and reduce energy consumption of; the whole network, there are also some problems. Based on these; discoveries, some possible research hotspots of mobile solutions were; summarized in many aspects, such as method types, network architecture,; node model, and so on, indicating the future direction of research and; development.国家自然科学基金资助项目; 国家科技支撑计划项

    Communication technologies to design vehicle-to-vehicle and vehile-to-infrastructures applications

    Get PDF
    Intelligent Transport Systems use communication technologies to offer real-time traffic information services to road users and government managers. Vehicular Ad Hoc Networks is an important component of ITS where vehicles communicate with other vehicles and road-side infrastructures, analyze and process received information, and make decisions according to that. However, features like high vehicle speeds, constant mobility, varying topology, traffic density, etc. induce challenges that make conventional wireless technologies unsuitable for vehicular networks. This paper focuses on the process of designing efficient vehicle-to-vehicle and vehicle-to road-side infrastructure applications.Peer ReviewedPostprint (published version
    corecore