2,679 research outputs found

    Dexterous Manipulation Graphs

    Full text link
    We propose the Dexterous Manipulation Graph as a tool to address in-hand manipulation and reposition an object inside a robot's end-effector. This graph is used to plan a sequence of manipulation primitives so to bring the object to the desired end pose. This sequence of primitives is translated into motions of the robot to move the object held by the end-effector. We use a dual arm robot with parallel grippers to test our method on a real system and show successful planning and execution of in-hand manipulation

    Multiple cooperating manipulators: The case of kinematically redundant arms

    Get PDF
    Existing work concerning two or more manipulators simultaneously grasping and transferring a common load is continued and extended. Specifically considered is the case of one or more arms being kinematically redundant. Some existing results in the modeling and control of single redundant arms and multiple manipulators are reviewed. The cooperating situation is modeled in terms of a set of coordinates representing object motion and internal object squeezing. Nominal trajectories in these coordinates are produced via actuator load distribution algorithms introduced previously. A controller is developed to track these desired object trajectories while making use of the kinematic redundancy to additionally aid the cooperation and coordination of the system. It is shown how the existence of kinematic redundancy within the system may be used to enhance the degree of cooperation achievable

    Analysis and Observations from the First Amazon Picking Challenge

    Full text link
    This paper presents a overview of the inaugural Amazon Picking Challenge along with a summary of a survey conducted among the 26 participating teams. The challenge goal was to design an autonomous robot to pick items from a warehouse shelf. This task is currently performed by human workers, and there is hope that robots can someday help increase efficiency and throughput while lowering cost. We report on a 28-question survey posed to the teams to learn about each team's background, mechanism design, perception apparatus, planning and control approach. We identify trends in this data, correlate it with each team's success in the competition, and discuss observations and lessons learned based on survey results and the authors' personal experiences during the challenge

    Autonomous Mechanical Assembly on the Space Shuttle: An Overview

    Get PDF
    The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed

    Humanoid Robot

    Get PDF
    A humanoid robot includes a torso, a pair of arms, two hands, a neck, and a head. The torso extends along a primary axis and presents a pair of shoulders. The pair of arms movably extend from a respective one of the pair of shoulders. Each of the arms has a plurality of arm joints. The neck movably extends from the torso along the primary axis. The neck has at least one neck joint. The head movably extends from the neck along the primary axis. The head has at least one head joint. The shoulders are canted toward one another at a shrug angle that is defined between each of the shoulders such that a workspace is defined between the shoulders

    Concurrent Path Planning with One or More Humanoid Robots

    Get PDF
    A robotic system includes a controller and one or more robots each having a plurality of robotic joints. Each of the robotic joints is independently controllable to thereby execute a cooperative work task having at least one task execution fork, leading to multiple independent subtasks. The controller coordinates motion of the robot(s) during execution of the cooperative work task. The controller groups the robotic joints into task-specific robotic subsystems, and synchronizes motion of different subsystems during execution of the various subtasks of the cooperative work task. A method for executing the cooperative work task using the robotic system includes automatically grouping the robotic joints into task-specific subsystems, and assigning subtasks of the cooperative work task to the subsystems upon reaching a task execution fork. The method further includes coordinating execution of the subtasks after reaching the task execution fork

    Method and apparatus for automatic control of a humanoid robot

    Get PDF
    A robotic system includes a humanoid robot having a plurality of joints adapted for force control with respect to an object acted upon by the robot, a graphical user interface (GUI) for receiving an input signal from a user, and a controller. The GUI provides the user with intuitive programming access to the controller. The controller controls the joints using an impedance-based control framework, which provides object level, end-effector level, and/or joint space-level control of the robot in response to the input signal. A method for controlling the robotic system includes receiving the input signal via the GUI, e.g., a desired force, and then processing the input signal using a host machine to control the joints via an impedance-based control framework. The framework provides object level, end-effector level, and/or joint space-level control of the robot, and allows for functional-based GUI to simplify implementation of a myriad of operating modes
    • …
    corecore