3,947 research outputs found

    Location Spoofing Detection for VANETs by a Single Base Station in Rician Fading Channels

    Full text link
    In this work we examine the performance of a Location Spoofing Detection System (LSDS) for vehicular networks in the realistic setting of Rician fading channels. In the LSDS, an authorized Base Station (BS) equipped with multiple antennas utilizes channel observations to identify a malicious vehicle, also equipped with multiple antennas, that is spoofing its location. After deriving the optimal transmit power and the optimal directional beamformer of a potentially malicious vehicle, robust theoretical analysis and detailed simulations are conducted in order to determine the impact of key system parameters on the LSDS performance. Our analysis shows how LSDS performance increases as the Rician K-factor of the channel between the BS and legitimate vehicles increases, or as the number of antennas at the BS or legitimate vehicle increases. We also obtain the counter-intuitive result that the malicious vehicle's optimal number of antennas conditioned on its optimal directional beamformer is equal to the legitimate vehicle's number of antennas. The results we provide here are important for the verification of location information reported in IEEE 1609.2 safety messages.Comment: 6 pages, 5 figures, Added further clarification on constraints imposed on the detection minimization strategy. Minor typos fixe

    Enhanced Position Verification for VANETs using Subjective Logic

    Full text link
    The integrity of messages in vehicular ad-hoc networks has been extensively studied by the research community, resulting in the IEEE~1609.2 standard, which provides typical integrity guarantees. However, the correctness of message contents is still one of the main challenges of applying dependable and secure vehicular ad-hoc networks. One important use case is the validity of position information contained in messages: position verification mechanisms have been proposed in the literature to provide this functionality. A more general approach to validate such information is by applying misbehavior detection mechanisms. In this paper, we consider misbehavior detection by enhancing two position verification mechanisms and fusing their results in a generalized framework using subjective logic. We conduct extensive simulations using VEINS to study the impact of traffic density, as well as several types of attackers and fractions of attackers on our mechanisms. The obtained results show the proposed framework can validate position information as effectively as existing approaches in the literature, without tailoring the framework specifically for this use case.Comment: 7 pages, 18 figures, corrected version of a paper submitted to 2016 IEEE 84th Vehicular Technology Conference (VTC2016-Fall): revised the way an opinion is created with eART, and re-did the experiments (uploaded here as correction in agreement with TPC Chairs
    • …
    corecore