2,961 research outputs found

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    A Multi-Game Framework for Harmonized LTE-U and WiFi Coexistence over Unlicensed Bands

    Full text link
    The introduction of LTE over unlicensed bands (LTE-U) will enable LTE base stations (BSs) to boost their capacity and offload their traffic by exploiting the underused unlicensed bands. However, to reap the benefits of LTE-U, it is necessary to address various new challenges associated with LTE-U and WiFi coexistence. In particular, new resource management techniques must be developed to optimize the usage of the network resources while handling the interdependence between WiFi and LTE users and ensuring that WiFi users are not jeopardized. To this end, in this paper, a new game theoretic tool, dubbed as \emph{multi-game} framework is proposed as a promising approach for modeling resource allocation problems in LTE-U. In such a framework, multiple, co-existing and coupled games across heterogeneous channels can be formulated to capture the specific characteristics of LTE-U. Such games can be of different properties and types but their outcomes are largely interdependent. After introducing the basics of the multi-game framework, two classes of algorithms are outlined to achieve the new solution concepts of multi-games. Simulation results are then conducted to show how such a multi-game can effectively capture the specific properties of LTE-U and make of it a "friendly" neighbor to WiFi.Comment: Accepted for publication at IEEE Wireless Communications Magazine, Special Issue on LTE in Unlicensed Spectru

    Design and Implementation of Distributed Resource Management for Time Sensitive Applications

    Full text link
    In this paper, we address distributed convergence to fair allocations of CPU resources for time-sensitive applications. We propose a novel resource management framework where a centralized objective for fair allocations is decomposed into a pair of performance-driven recursive processes for updating: (a) the allocation of computing bandwidth to the applications (resource adaptation), executed by the resource manager, and (b) the service level of each application (service-level adaptation), executed by each application independently. We provide conditions under which the distributed recursive scheme exhibits convergence to solutions of the centralized objective (i.e., fair allocations). Contrary to prior work on centralized optimization schemes, the proposed framework exhibits adaptivity and robustness to changes both in the number and nature of applications, while it assumes minimum information available to both applications and the resource manager. We finally validate our framework with simulations using the TrueTime toolbox in MATLAB/Simulink

    Cooperative power control approaches towards fair radio resource allocation for wireless network

    Get PDF
    Performance optimization in wireless networks is a complex problem due to variability and dynamics in network topology and density, traffic patterns, mutual interference, channel uncertainties, etc. Opportunistic or selfish approaches may result in unbalanced allocation of channel capacity where particular links are overshadowed. This degrades overall network fairness and hinders a multi-hop communication by creating bottlenecks. A desired approach should allocate channel capacity proportionally to traffic priority in a cooperative manner. This work consists of two chapters that address the fairness share problem in wireless ad hoc, peer-to-peer networks and resource allocation within Cognitive Radio network. In the first paper, two fair power control schemes are proposed and mathematically analyzed. The schemes dynamically determine the viable resource allocation for a particular peer-to-peer network. In contrast, the traditional approaches often derive such viable capacity for a class of topologies. Moreover, the previous power control schemes assume that the target capacity allocation, or signal-to-interference ratio (SIR), is known and feasible. This leads to unfairness if the target SIR is not viable. The theoretical and simulation results show that the capacity is equally allocated for each link in the presence of radio channel uncertainties. In the second paper, based on the fair power control schemes, two novel power control schemes and an integrated power control scheme are proposed regarding the resource allocation for Cognitive Radio network to increase the efficiency of the resource while satisfying the Primary Users\u27 Quality of Service. Simulation result and tradeoff discussion are given --Abstract, page iv
    • …
    corecore