15,967 research outputs found

    A Dynamic Clustering Algorithm for Object Tracking and Localization in WSN

    Get PDF
    A Wireless Sensor Network (WSN) is an assemblage of cooperative sensor nodes acting together into an environment to monitor an event of interest. However, one of the most limiting factors is the energy constrain for each node; therefore, it is a trade-off is required for that factor in designing of a network, while reporting, tracking or visualizing an event to be considered. In this paper, two object tracking techniques used in Wireless Sensor Networks based on cluster algorithms have been combined together to perform many functions in the proposed algorithm. The benefit of using clusters algorithms can be count as the detection node in a cluster reports an event to the Cluster Head (CH) node according to a query, and then the CH sends all the collected information to the sink or the base station. This way reduces energy consuming and required communication bandwidth. Furthermore, the algorithm is highly scalable while it prolongs the life time of the network

    Intrusion-aware Alert Validation Algorithm for Cooperative Distributed Intrusion Detection Schemes of Wireless Sensor Networks

    Get PDF
    Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.Comment: 19 pages, 7 figure

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Stationary and Mobile Target Detection using Mobile Wireless Sensor Networks

    Full text link
    In this work, we study the target detection and tracking problem in mobile sensor networks, where the performance metrics of interest are probability of detection and tracking coverage, when the target can be stationary or mobile and its duration is finite. We propose a physical coverage-based mobility model, where the mobile sensor nodes move such that the overlap between the covered areas by different mobile nodes is small. It is shown that for stationary target scenario the proposed mobility model can achieve a desired detection probability with a significantly lower number of mobile nodes especially when the detection requirements are highly stringent. Similarly, when the target is mobile the coverage-based mobility model produces a consistently higher detection probability compared to other models under investigation.Comment: 7 pages, 12 figures, appeared in INFOCOM 201

    Data Transmission with Reduced Delay for Distributed Acoustic Sensors

    Full text link
    This paper proposes a channel access control scheme fit to dense acoustic sensor nodes in a sensor network. In the considered scenario, multiple acoustic sensor nodes within communication range of a cluster head are grouped into clusters. Acoustic sensor nodes in a cluster detect acoustic signals and convert them into electric signals (packets). Detection by acoustic sensors can be executed periodically or randomly and random detection by acoustic sensors is event driven. As a result, each acoustic sensor generates their packets (50bytes each) periodically or randomly over short time intervals (400ms~4seconds) and transmits directly to a cluster head (coordinator node). Our approach proposes to use a slotted carrier sense multiple access. All acoustic sensor nodes in a cluster are allocated to time slots and the number of allocated sensor nodes to each time slot is uniform. All sensor nodes allocated to a time slot listen for packet transmission from the beginning of the time slot for a duration proportional to their priority. The first node that detect the channel to be free for its whole window is allowed to transmit. The order of packet transmissions with the acoustic sensor nodes in the time slot is autonomously adjusted according to the history of packet transmissions in the time slot. In simulations, performances of the proposed scheme are demonstrated by the comparisons with other low rate wireless channel access schemes.Comment: Accepted to IJDSN, final preprinted versio

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network
    corecore