1,551 research outputs found

    Towards Data Optimization in Storages and Networks

    Get PDF
    Title from PDF of title page, viewed on August 7, 2015Dissertation advisors: Sejun Song and Baek-Young ChoiVitaIncludes bibliographic references (pages 132-140)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2015We are encountering an explosion of data volume, as a study estimates that data will amount to 40 zeta bytes by the end of 2020. This data explosion poses significant burden not only on data storage space but also access latency, manageability, and processing and network bandwidth. However, large portions of the huge data volume contain massive redundancies that are created by users, applications, systems, and communication models. Deduplication is a technique to reduce data volume by removing redundancies. Reliability will be even improved when data is replicated after deduplication. Many deduplication studies such as storage data deduplication and network redundancy elimination have been proposed to reduce storage consumption and network bandwidth consumption. However, existing solutions are not efficient enough to optimize data delivery path from clients to servers through network. Hence we propose a holistic deduplication framework to optimize data in their path. Our deduplication framework consists of three components including data sources or clients, networks, and servers. The client component removes local redundancies in clients, the network component removes redundant transfers coming from different clients, and the server component removes redundancies coming from different networks. We designed and developed components for the proposed deduplication framework. For the server component, we developed the Hybrid Email Deduplication System that achieves a trade-off of space savings and overhead for email systems. For the client component, we developed the Structure Aware File and Email Deduplication for Cloudbased Storage Systems that is very fast as well as having good space savings by using structure-based granularity. For the network component, we developed a system called Software-defined Deduplication as a Network and Storage service that is in-network deduplication, and that chains storage data deduplication and network redundancy elimination functions by using Software Defined Network to achieve both storage space and network bandwidth savings with low processing time and memory size. We also discuss mobile deduplication for image and video files in mobile devices. Through system implementations and experiments, we show that the proposed framework effectively and efficiently optimizes data volume in a holistic manner encompassing the entire data path of clients, networks and storage servers.Introduction -- Deduplication technology -- Existing deduplication approaches -- HEDS: Hybrid Email Deduplication System -- SAFE: Structure-aware File and Email Deduplication for cloud-based storage systems -- SoftDance: Software-defined Deduplication as a Network and Storage Service -- Moblie de-duplication -- Conclusion

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    Flexpop: A popularity-based caching strategy for multimedia applications in information-centric networking

    Get PDF
    Information-Centric Networking (ICN) is the dominant architecture for the future Internet. In ICN, the content items are stored temporarily in network nodes such as routers. When the memory of routers becomes full and there is no room for a new arriving content, the stored contents are evicted to cope with the limited cache size of the routers. Therefore, it is crucial to develop an effective caching strategy for keeping popular contents for a longer period of time. This study proposes a new caching strategy, named Flexible Popularity-based Caching (FlexPop) for storing popular contents. The FlexPop comprises two mechanisms, i.e., Content Placement Mechanism (CPM), which is responsible for content caching, and Content Eviction Mechanism (CEM) that deals with content eviction when the router cache is full and there is no space for the new incoming content. Both mechanisms are validated using Fuzzy Set Theory, following the Design Research Methodology (DRM) to manifest that the research is rigorous and repeatable under comparable conditions. The performance of FlexPop is evaluated through simulations and the results are compared with those of the Leave Copy Everywhere (LCE), ProbCache, and Most Popular Content (MPC) strategies. The results show that the FlexPop strategy outperforms LCE, ProbCache, and MPC with respect to cache hit rate, redundancy, content retrieval delay, memory utilization, and stretch ratio, which are regarded as extremely important metrics (in various studies) for the evaluation of ICN caching. The outcomes exhibited in this study are noteworthy in terms of making FlexPop acceptable to users as they can verify the performance of ICN before selecting the right caching strategy. Thus FlexPop has potential in the use of ICN for the future Internet such as in deployment of the IoT technology

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Reliable and timely event notification for publish/subscribe services over the internet

    Get PDF
    The publish/subscribe paradigm is gaining attention for the development of several applications in wide area networks (WANs) due to its intrinsic time, space, and synchronization decoupling properties that meet the scalability and asynchrony requirements of those applications. However, while the communication in a WAN may be affected by the unpredictable behavior of the network, with messages that can be dropped or delayed, existing publish/subscribe solutions pay just a little attention to addressing these issues. On the contrary, applications such as business intelligence, critical infrastructures, and financial services require delivery guarantees with strict temporal deadlines. In this paper, we propose a framework that enforces both reliability and timeliness for publish/subscribe services over WAN. Specifically, we combine two different approaches: gossiping, to retrieve missing packets in case of incomplete information, and network coding, to reduce the number of retransmissions and, consequently, the latency. We provide an analytical model that describes the information recovery capabilities of our algorithm and a simulation-based study, taking into account a real workload from the Air Traffic Control domain, which evidences how the proposed solution is able to ensure reliable event notification over a WAN within a reasonable bounded time window. © 2013 IEEE
    • …
    corecore