1,893 research outputs found

    Towards Structuring Smart Grid: Energy Scheduling, Parking Lot Allocation, and Charging Management

    Get PDF
    Nowadays, the conventional power systems are being restructured and changed into smart grids to improve their reliability and efficiency, which brings about better social, economic, and environmental benefits. To build a smart grid, energy scheduling, energy management, parking lot allocation, and charging management of plug-in electric vehicles (PEVs) are important subjects that must be considered. Accordingly, in this dissertation, three problems in structuring a smart grid are investigated. The first problem investigates energy scheduling of smart homes (SHs) to minimize daily energy consumption cost. The challenges of the problem include modeling the technical and economic constraints of the sources and dealing with the variability and uncertainties concerned with the power of the photovoltaic (PV) panels that make the problem a mixed-integer nonlinear programming (MINLP), dynamic (time-varying), and stochastic optimization problem. In order to handle the variability and uncertainties of power of PV panels, we propose a multi-time scale stochastic model predictive control (MPC). We use multi-time scale approach in the stochastic MPC to simultaneously have vast vision for the optimization time horizon and precise resolution for the problem variables. In addition, a combination of genetic algorithm (GA) and linear programming (GA-LP) is applied as the optimization tool. Further, we propose cooperative distributed energy scheduling to enable SHs to share their energy resources in a distributed way. The simulation results demonstrate remarkable cost saving due to cooperation of SHs with one another and the effectiveness of multi-time scale MPC over single-time scale MPC. Compared to the previous studies, this work is the first study that proposes cooperative distributed energy scheduling for SHs and applies multi-time scale optimization. In the second problem, the price-based energy management of SHs for maximizing the daily profit of GENCO is investigated. The goal of GENCO is to design an optimal energy management scheme (optimal prices of electricity) that will maximize its daily profit based on the demand of active customers (SHs) that try to minimize their daily operation cost. In this study, a scenario-based stochastic approach is applied in the energy scheduling problem of each SH to address the variability and uncertainty issues of PV panels. Also, a combination of genetic algorithm (GA) and linear programming (GA-LP) is applied as the optimization tool for the energy scheduling problem of a SH. Moreover, Lambda-Iteration Economic Dispatch and GA approaches are applied to solve the generation scheduling and unit commitment (UC) problems of the GENCO, respectively. The numerical study shows the potential benefit of energy management for both GENCO and SH. Moreover, it is proven that the GENCO needs to implement the optimal scheme of energy management; otherwise, it will not be effective. Compared to the previous studies, the presented study in this paper is the first study that considers the interaction between a GENCO and SHs through the price-controlled energy management to maximize the daily profit of the GENCO and minimize the operation cost of each SH. In the third problem, traffic and grid-based parking lots allocation and charging management of PEVs is investigated from a DISCO’s and a GENCO’s viewpoints. Herein, the DISCO allocates the parking lots to each electrical feeder to minimize the overall cost of planning problem over the planning time horizon (30 years) and the GENCO manages the charging time of PEVs to maximize its daily profit by deferring the most expensive and pollutant generation units. In both planning and operation problems, the driving patterns of the PEVs’ drivers and their reaction respect to the value of incentive (discount on charging fee) and the average daily distance from the parking lot are modeled. The optimization problems of each DISCO and GENCO are solved applying quantum-inspired simulated annealing (SA) algorithm (QSA algorithm) and genetic algorithm (GA), respectively. We demonstrate that the behavioral model of drivers and their driving patterns can remarkably affect the outcomes of planning and operation problems. We show that optimal allocation of parking lots can minimize every DISCO’s planning cost and increase the GENCO’s daily profit. Compared to the previous works, the presented study in this paper is the first study that investigates the optimal parking lot placement problem (from every DISCO’s view point) and the problem of optimal charging management of PEVs (from a GENCO’s point of view) considering the characteristics of electrical distribution network, driving pattern of PEVs, and the behavior of drivers respect to value of introduced incentive and their daily distance from the suggested parking lots. In our future work, we will develop a more efficient smart grid. Specifically, we will investigate the effects of inaccessibility of SHs to the grid and disconnection of SHs in the first problem, model the reaction of other end users (in addition to SHs) based on the price elasticity of demand and their social welfare in the second problem, and propose methods for energy management of end users (in addition to charging management of PEVs) and model the load of end users in the third problem

    Self-organizing Coordination of Multi-Agent Microgrid Networks

    Get PDF
    abstract: This work introduces self-organizing techniques to reduce the complexity and burden of coordinating distributed energy resources (DERs) and microgrids that are rapidly increasing in scale globally. Technical and financial evaluations completed for power customers and for utilities identify how disruptions are occurring in conventional energy business models. Analyses completed for Chicago, Seattle, and Phoenix demonstrate site-specific and generalizable findings. Results indicate that net metering had a significant effect on the optimal amount of solar photovoltaics (PV) for households to install and how utilities could recover lost revenue through increasing energy rates or monthly fees. System-wide ramp rate requirements also increased as solar PV penetration increased. These issues are resolved using a generalizable, scalable transactive energy framework for microgrids to enable coordination and automation of DERs and microgrids to ensure cost effective use of energy for all stakeholders. This technique is demonstrated on a 3-node and 9-node network of microgrid nodes with various amounts of load, solar, and storage. Results found that enabling trading could achieve cost savings for all individual nodes and for the network up to 5.4%. Trading behaviors are expressed using an exponential valuation curve that quantifies the reputation of trading partners using historical interactions between nodes for compatibility, familiarity, and acceptance of trades. The same 9-node network configuration is used with varying levels of connectivity, resulting in up to 71% cost savings for individual nodes and up to 13% cost savings for the network as a whole. The effect of a trading fee is also explored to understand how electricity utilities may gain revenue from electricity traded directly between customers. If a utility imposed a trading fee to recoup lost revenue then trading is financially infeasible for agents, but could be feasible if only trying to recoup cost of distribution charges. These scientific findings conclude with a brief discussion of physical deployment opportunities.Dissertation/ThesisDoctoral Dissertation Systems Engineering 201

    Mathematical models and analysis for demand side management in residential electricity distribution networks.

    Get PDF
    Development of smart grids along with communication technologies have led to the increased attention and adoption of demand side management (DSM) in the residential sector. Among various DSM schemes, demand response (DR) is a market- based mechanism to shave peak electricity consumption at the system level. In the past decade, the academia has seen a growing literature studying load management methodologies for residential consumers. A typical demand response program has three important facets: the energy cost, comfort of the consumers and overall system efficiency. In this dissertation, we investigate and develop models for effective load control to minimize energy cost and for understanding electricity consumer behavior so as to best design DR schemes. Participation in a real-world field demonstration not only stimulated our motivation for these studies, but also provided us with real- world data to validate the developed models and analyses. This in fact makes the dissertation distinct from current academic literature. We first develop a control algorithm for Heating Ventilation Air-Conditioning (HVAC) systems in households during a peak period. The dynamic programming based model can determine the optimal temperature set-points of a thermostat given the lower and upper limits of temperature that household feels comfortable and the desired duration of the control. The temperature limits act as a quantitative metric for the comfort level of consumers. The objective is to minimize the energy consumption. The model is particularly suitable for DR programs with critical peak pricing, in which a higher electricity rate occurs during the peak period. When deployed separately during the peak and adjoining two periods, the model can keep the inside temperature within the given limits while consuming minimal energy during the peak period. This ensures that the HVAC system would have minimal usage during the peak period as the temperature is kept within the limits. In addition, we show that alternative start and end times of the control algorithm can be tested for each home. Analyses of the alternative options provide us with information about the insulation of the building. We perform computational experiments with real-world data to show the efficacy of the proposed methodology. Second, we propose a mixed-integer linear fractional programming (MILFP) model to optimally deploy the dynamic programming based HVAC controllers among a pool of homes in a staggered fashion. Doing so, the model aims to flatten the demand curve over time thus maximizing the load factor for the entire distribution network. In addition, we develop a reformulation of the MILFP model into an MILP model which significantly reduces computational time for medium-scale instances. Furthermore, for large-scale instances, excessive computational times by general purpose solvers motivate us to develop a customized bi-section search algorithm. Our extensive computational experiments conclude that the customized algorithm is able to solve real-world as well as randomly generated instances in reasonable CPU times. In another effort, we study the behavior of consumers when subject to dynamic pricing under a DR program. We model the price-responsive behavior with utility functions and develop a bi-level programming model to estimate the coefficients of such a function utilizing consumption data from advanced metering infrastructure (AMI) from the field demonstration project mentioned previously. The upper level objective is to minimize the estimation error between the measured data and the optimum consumption while the lower level is for each household/consumer to maximize their total utility of energy consumption. We propose a trust-region algorithm to solve the non-linear bi-level utility estimation (BLUE) model after employing linear and quadratic approximation for the upper and lower level objective function, respectively. A mathematical property of the optimal solution is exploited to develop a cut that has significantly improved the computational time. Numerical experiments with real world data are conducted to validate the proposed models. In addition, we show the strong positive correlation between the utility coefficients and the widely used price elasticity property. Finally, this dissertation also presents several empirical models to assess the effect of smart technologies on electricity consumption under a demand charge dynamic pricing rate. The models developed here were being utilized in the aforementioned demand response pilot study. We present a statistical test based model to estimate the change of coincident load of residential consumers with the installation of efficient appliances including heat pump water heaters, smart thermostats, and battery storage units. The method utilizes a day matching algorithm to pair days with similar weather conditions. The consumption data from the two paired up days are used to conduct a paired t-test to evaluate the statistical significance of the changes. The results reveal that insulation plays an important role in energy savings along with battery systems

    Upscaling energy control from building to districts: current limitations and future perspectives

    Get PDF
    Due to the complexity and increasing decentralisation of the energy infrastructure, as well as growing penetration of renewable generation and proliferation of energy prosumers, the way in which energy consumption in buildings is managed must change. Buildings need to be considered as active participants in a complex and wider district-level energy landscape. To achieve this, the authors argue the need for a new generation of energy control systems capable of adapting to near real-time environmental conditions while maximising the use of renewables and minimising energy demand within a district environment. This will be enabled by cloud-based demand-response strategies through advanced data analytics and optimisation, underpinned by semantic data models as demonstrated by the Computational Urban Sustainability Platform, CUSP, prototype presented in this paper. The growing popularity of time of use tariffs and smart, IoT connected devices offer opportunities for Energy Service Companies, ESCo’s, to play a significant role in this new energy landscape. They could provide energy management and cost savings for adaptable users, while meeting energy and CO2 reduction targets. The paper provides a critical review and agenda setting perspective for energy management in buildings and beyond

    Artificial Intelligence and Machine Learning Approaches to Energy Demand-Side Response: A Systematic Review

    Get PDF
    Recent years have seen an increasing interest in Demand Response (DR) as a means to provide flexibility, and hence improve the reliability of energy systems in a cost-effective way. Yet, the high complexity of the tasks associated with DR, combined with their use of large-scale data and the frequent need for near real-time de-cisions, means that Artificial Intelligence (AI) and Machine Learning (ML) — a branch of AI — have recently emerged as key technologies for enabling demand-side response. AI methods can be used to tackle various challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and pref-erences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR schemes and how to reward them in a fair and economically efficient way. This work provides an overview of AI methods utilised for DR applications, based on a systematic review of over 160 papers, 40 companies and commercial initiatives, and 21 large-scale projects. The papers are classified with regards to both the AI/ML algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including both start-ups and established companies) and large-scale innovation projects, where AI methods have been used for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI techniques for different DR tasks, and outlines directions for future research in this fast-growing area

    Smart household management systems with renewable generation to increase the operation profit of a microgrid

    Get PDF
    During the past few years, due to the growth of electric power consumption, generation costs as well as rises in the level of greenhouse gases efficiency bring special focus on distributed generation. Developing distributed generation resources, especially renewable energy resources, is one of the safest ways to solve such problem. These resources have been decentralised by being installed close to the houses producing few kilowatts. Therefore, there are no losses in transmission lines and provide response for demand. Based on their benefits, the use of such energy resources should be developed in the future, but its management and optimal use is a major challenge. This has become one of the main concerns ofenergy systems researchers. In the current study, an innovative model is provided as a strategic management. It is intended to optimise the operation in smart homes consisting of generation units such as a wind turbine, solar panels, storages, and un/controllable loads. The main objective of this optimisation management is to maximise microgrid profitability for 24 h. The overall results of the model proved that the profit of microgrid increased significantly.fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore