2,789 research outputs found

    CBCC3 — A contribution-based cooperative co-evolutionary algorithm with improved exploration/exploitation balance

    Get PDF
    Cooperative Co-evolution (CC) is a promising framework for solving large-scale optimization problems. However, the round-robin strategy of CC is not an efficient way of allocating the available computational resources to components of imbalanced functions. The imbalance problem happens when the components of a partially separable function have non-uniform contributions to the overall objective value. Contribution-Based Cooperative Co-evolution (CBCC) is a variant of CC that allocates the available computational resources to the individual components based on their contributions. CBCC variants (CBCC1 and CBCC2) have shown better performance than the standard CC in a variety of cases. In this paper, we show that over-exploration and over-exploitation are two major sources of performance loss in the existing CBCC variants. On that basis, we propose a new contribution-based algorithm that maintains a better balance between exploration and exploitation. The empirical results show that the new algorithm is superior to its predecessors as well as the standard CC

    Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems

    Get PDF
    This paper addresses the issue of computational resource allocation within the context of cooperative coevolution. Cooperative coevolution typically works by breaking a problem down into smaller subproblems (or components) and coevolving them in a round-robin fashion, resulting in a uniform resource allocation among its components. Despite its success on a wide range of problems, cooperative coevolution struggles to perform efficiently when its components do not contribute equally to the overall objective value. This is of crucial importance on large-scale optimization problems where such difference are further magnified. To resolve this imbalance problem, we extend the standard cooperative coevolution to a new generic framework capable of learning the contribution of each component using multi-armed bandit techniques. The new framework allocates the computational resources to each component proportional to their contributions towards improving the overall objective value. This approach results in a more economical use of the limited computational resources. We study different aspects of the proposed framework in the light of extensive experiments. Our empirical results confirm that even a simple bandit-based credit assignment scheme can significantly improve the performance of cooperative coevolution on large-scale continuous problems, leading to competitive performance as compared to the state-of-the-art algorithms

    Contribution based multi-island competitive cooperative coevolution

    Get PDF
    Competition in cooperative coevolution (CC) has demonstrated success in solving global optimization problems. In a recent study, a multi-island competitive cooperative coevolution (MIC3) algorithm was introduced that featured competition and collaboration of several different problem decomposition strategies implemented as independent islands. It was shown that MIC3converges to high quality solutions without the need to find an optimal decomposition. MIC3splits the computational budget in terms of the number of function evaluations, equally amongst all the islands and evolves them in a round-robin fashion. This overlooks the difference in contributions of different islands towards improving the overall objective function value. Therefore, a considerable amount of function evaluations is wasted on the low-contributing islands as their problem decomposition strategies may not appeal to the problem at the given stage of the evolutionary process. This paper proposes contribution-based MIC3 algorithms (MIC4) that quantifies the contributions of each island and allocates the computational budget accordingly. The experimental analysis reveals that the proposed method outperforms its counterpart

    Solving Incremental Optimization Problems via Cooperative Coevolution

    Get PDF
    Engineering designs can involve multiple stages, where at each stage, the design models are incrementally modified and optimized. In contrast to traditional dynamic optimization problems where the changes are caused by some objective factors, the changes in such incremental optimization problems are usually caused by the modifications made by the decision makers during the design process. While existing work in the literature is mainly focused on traditional dynamic optimization, little research has been dedicated to solving such incremental optimization problems. In this work, we study how to adopt cooperative coevolution to efficiently solve a specific type of incremental optimization problems, namely, those with increasing decision variables. First, we present a benchmark function generator on the basis of some basic formulations of incremental optimization problems with increasing decision variables and exploitable modular structure. Then, we propose a contribution based cooperative coevolutionary framework coupled with an incremental grouping method for dealing with them. On one hand, the benchmark function generator is capable of generating various benchmark functions with various characteristics. On the other hand, the proposed framework is promising in solving such problems in terms of both optimization accuracy and computational efficiency. In addition, the proposed method is further assessed using a real-world application, i.e., the design optimization of a stepped cantilever beam

    Infrequent pattern detection for reliable network traffic analysis using robust evolutionary computation

    Get PDF
    While anomaly detection is very important in many domains, such as in cybersecurity, there are many rare anomalies or infrequent patterns in cybersecurity datasets. Detection of infrequent patterns is computationally expensive. Cybersecurity datasets consist of many features, mostly irrelevant, resulting in lower classification performance by machine learning algorithms. Hence, a feature selection (FS) approach, i.e., selecting relevant features only, is an essential preprocessing step in cybersecurity data analysis. Despite many FS approaches proposed in the literature, cooperative co-evolution (CC)-based FS approaches can be more suitable for cybersecurity data preprocessing considering the Big Data scenario. Accordingly, in this paper, we have applied our previously proposed CC-based FS with random feature grouping (CCFSRFG) to a benchmark cybersecurity dataset as the preprocessing step. The dataset with original features and the dataset with a reduced number of features were used for infrequent pattern detection. Experimental analysis was performed and evaluated using 10 unsupervised anomaly detection techniques. Therefore, the proposed infrequent pattern detection is termed Unsupervised Infrequent Pattern Detection (UIPD). Then, we compared the experimental results with and without FS in terms of true positive rate (TPR). Experimental analysis indicates that the highest rate of TPR improvement was by cluster-based local outlier factor (CBLOF) of the backdoor infrequent pattern detection, and it was 385.91% when using FS. Furthermore, the highest overall infrequent pattern detection TPR was improved by 61.47% for all infrequent patterns using clustering-based multivariate Gaussian outlier score (CMGOS) with FS
    • …
    corecore