366 research outputs found

    Enhanced Compressive Wideband Frequency Spectrum Sensing for Dynamic Spectrum Access

    Get PDF
    Wideband spectrum sensing detects the unused spectrum holes for dynamic spectrum access (DSA). Too high sampling rate is the main problem. Compressive sensing (CS) can reconstruct sparse signal with much fewer randomized samples than Nyquist sampling with high probability. Since survey shows that the monitored signal is sparse in frequency domain, CS can deal with the sampling burden. Random samples can be obtained by the analog-to-information converter. Signal recovery can be formulated as an L0 norm minimization and a linear measurement fitting constraint. In DSA, the static spectrum allocation of primary radios means the bounds between different types of primary radios are known in advance. To incorporate this a priori information, we divide the whole spectrum into subsections according to the spectrum allocation policy. In the new optimization model, the minimization of the L2 norm of each subsection is used to encourage the cluster distribution locally, while the L0 norm of the L2 norms is minimized to give sparse distribution globally. Because the L0/L2 optimization is not convex, an iteratively re-weighted L1/L2 optimization is proposed to approximate it. Simulations demonstrate the proposed method outperforms others in accuracy, denoising ability, etc.Comment: 23 pages, 6 figures, 4 table. arXiv admin note: substantial text overlap with arXiv:1005.180

    Sparsity Independent Sub-Nyquist Rate Wideband Spectrum Sensing on Real-Time TV White Space

    Get PDF

    Over-the-air computation for cooperative wideband spectrum sensing and performance analysis

    Get PDF
    For sensor network aided cognitive radio, cooperative wideband spectrum sensing can distribute the sampling and computing pressure of spectrum sensing to multiple sensor nodes (SNs) in an efficient way. However, this may incur high latency due to distributed data aggregation, especially when the number of SNs is large. In this paper, we propose a novel cooperative wideband spectrum sensing scheme using over-the-air computation. Its key idea is to utilize the superposition property of wireless channel to implement the summation of Fourier transform. This avoids distributed data aggregation by computing the target function directly. The performance of the proposed scheme is analyzed with imperfect synchronization between different SNs. Furthermore, a synchronization phase offset (SPO) estimation and equalization method is proposed. The corresponding performance after equalization is also derived. A working prototype based on universal software radio periphera (USRP) and Monte Carlo simulation is built to verify the performance of the proposed scheme

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Cooperative Wideband Spectrum Sensing Based on Joint Sparsity

    Get PDF
    COOPERATIVE WIDEBAND SPECTRUM SENSING BASED ON JOINT SPARSITY By Ghazaleh Jowkar, Master of Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University Virginia Commonwealth University 2017 Major Director: Dr. Ruixin Niu, Associate Professor of Department of Electrical and Computer Engineering In this thesis, the problem of wideband spectrum sensing in cognitive radio (CR) networks using sub-Nyquist sampling and sparse signal processing techniques is investigated. To mitigate multi-path fading, it is assumed that a group of spatially dispersed SUs collaborate for wideband spectrum sensing, to determine whether or not a channel is occupied by a primary user (PU). Due to the underutilization of the spectrum by the PUs, the spectrum matrix has only a small number of non-zero rows. In existing state-of-the-art approaches, the spectrum sensing problem was solved using the low-rank matrix completion technique involving matrix nuclear-norm minimization. Motivated by the fact that the spectrum matrix is not only low-rank, but also sparse, a spectrum sensing approach is proposed based on minimizing a mixed-norm of the spectrum matrix instead of low-rank matrix completion to promote the joint sparsity among the column vectors of the spectrum matrix. Simulation results are obtained, which demonstrate that the proposed mixed-norm minimization approach outperforms the low-rank matrix completion based approach, in terms of the PU detection performance. Further we used mixed-norm minimization model in multi time frame detection. Simulation results shows that increasing the number of time frames will increase the detection performance, however, by increasing the number of time frames after a number of times the performance decrease dramatically
    • …
    corecore