262 research outputs found

    Transport coopératif d'un objet par deux robots humanoïdes dans un environnement encombré

    Get PDF
    Il y a présentement de la demande dans plusieurs milieux cherchant à utiliser des robots afin d'accomplir des tâches complexes, par exemple l'industrie de la construction désire des travailleurs pouvant travailler 24/7 ou encore effectuer des operation de sauvetage dans des zones compromises et dangereuses pour l'humain. Dans ces situations, il devient très important de pouvoir transporter des charges dans des environnements encombrés. Bien que ces dernières années il y a eu quelques études destinées à la navigation de robots dans ce type d'environnements, seulement quelques-unes d'entre elles ont abordé le problème de robots pouvant naviguer en déplaçant un objet volumineux ou lourd. Ceci est particulièrement utile pour transporter des charges ayant de poids et de formes variables, sans avoir à modifier physiquement le robot. Un robot humanoïde est une des plateformes disponibles afin d'effectuer efficacement ce type de transport. Celui-ci a, entre autres, l'avantage d'avoir des bras et ils peuvent donc les utiliser afin de manipuler précisément les objets à transporter. Dans ce mémoire de maîtrise, deux différentes techniques sont présentées. Dans la première partie, nous présentons un système inspiré par l'utilisation répandue de chariots de fortune par les humains. Celle-ci répond au problème d'un robot humanoïde naviguant dans un environnement encombré tout en déplaçant une charge lourde qui se trouve sur un chariot de fortune. Nous présentons un système de navigation complet, de la construction incrémentale d'une carte de l'environnement et du calcul des trajectoires sans collision à la commande pour exécuter ces trajectoires. Les principaux points présentés sont : 1) le contrôle de tout le corps permettant au robot humanoïde d'utiliser ses mains et ses bras pour contrôler les mouvements du système à chariot (par exemple, lors de virages serrés) ; 2) une approche sans capteur pour automatiquement sélectionner le jeu approprié de primitives en fonction du poids de la charge ; 3) un algorithme de planification de mouvement qui génère une trajectoire sans collisions en utilisant le jeu de primitive approprié et la carte construite de l'environnement ; 4) une technique de filtrage efficace permettant d'ignorer le chariot et le poids situés dans le champ de vue du robot tout en améliorant les performances générales des algorithmes de SLAM (Simultaneous Localization and Mapping) défini ; et 5) un processus continu et cohérent d'odométrie formés en fusionnant les informations visuelles et celles de l'odométrie du robot. Finalement, nous présentons des expériences menées sur un robot Nao, équipé d'un capteur RGB-D monté sur sa tête, poussant un chariot avec différentes masses. Nos expériences montrent que la charge utile peut être significativement augmentée sans changer physiquement le robot, et donc qu'il est possible d'augmenter la capacité du robot humanoïde dans des situations réelles. Dans la seconde partie, nous abordons le problème de faire naviguer deux robots humanoïdes dans un environnement encombré tout en transportant un très grand objet qui ne peut tout simplement pas être déplacé par un seul robot. Dans cette partie, plusieurs algorithmes et concepts présentés dans la partie précédente sont réutilisés et modifiés afin de convenir à un système comportant deux robot humanoides. Entre autres, nous avons un algorithme de planification de mouvement multi-robots utilisant un espace d'états à faible dimension afin de trouver une trajectoire sans obstacle en utilisant la carte construite de l'environnement, ainsi qu'un contrôle en temps réel efficace de tout le corps pour contrôler les mouvements du système robot-objet-robot en boucle fermée. Aussi, plusieurs systèmes ont été ajoutés, tels que la synchronisation utilisant le décalage relatif des robots, la projection des robots sur la base de leur position des mains ainsi que l'erreur de rétroaction visuelle calculée à partir de la caméra frontale du robot. Encore une fois, nous présentons des expériences faites sur des robots Nao équipés de capteurs RGB-D montés sur leurs têtes, se déplaçant avec un objet tout en contournant d'obstacles. Nos expériences montrent qu'un objet de taille non négligeable peut être transporté sans changer physiquement le robot

    Transport collaboratif d'une charge par un couple humain-robot

    Get PDF
    Les robots humanoïdes sont particulièrement adaptés à collaborer avec des humains. En effet, leur ressemblance avec l'être humain facilite leur acceptation sociale, et leur structure bipède les aide à fonctionner dans des environements conçus pour les humains. Par contre, cette même structure les rend instables et diffcile à contrôler, particulièrement lors d'interactions physiques avec d'autres acteurs. Ce projet de recherche s'attarde au contrôle de robots humanoïdes impliqués dans de telles tâches collaboratives. On s'intéresse plus particulièrement au transport d'objets lourds par un robot humanoïde et un humain. Pour ce faire, un modèle dynamique simplifié prenant en compte la dynamique de la tâche à accomplir ainsi que les forces appliquées sur le robot est proposé. Celui-ci permet une intégration directe de la compliance des bras et l'utilisation de contraintes dynamiques sur les forces d'interactions. Ce modèle est implémenté à l'aide d'un contrôleur de type Model Predictive Control. Un robot humanoïde de taille humaine (HRP-4) et un robot humanoïde de petite taille (NAO) ont été utilisés en simulation pour montrer les performances et la polyvalence de la méthode proposée, chacun transportant collaborativement des charges surpassant leur masse respective

    Transport collaboratif d’une charge par deux robots humanoïdes

    Get PDF
    La structure bipède des robots humanoïdes leur confère une grande agilité et la capacité de se déplacer dans des environnements encombrés qui ne sont pas accessibles à des robots à roues plus traditionnelles. Cette particularité fait en sorte que ce type de robot est le mieux adapté pour évoluer dans des environnements conçus pour et par l’homme. Cette grande agilité a toutefois un prix puisque les humanoïdes sont plus complexes à contrôler étant donné l’instabilité inhérente à la marche bipède. Dans ce projet de recherche, on s’intéresse au contrôle de robots humanoïdes dans le cadre de tâches très communes et intéressantes à reléguer aux robots, soit le transport d’objet. Le cas d’intérêt est le transport collaboratif d’une charge par deux humanoïdes étant donné que ça ne nécessite aucun outil externe et est ainsi applicable en toute circonstance. En premier lieu, un estimateur d’état applicable pour les robots humanoïdes de petite taille est proposé, permettant ainsi d’estimer les interactions entre le robot et son environnement. Ensuite, une stratégie de contrôle permettant à un humanoïde d’utiliser un chariot de transport pour déplacer un objet lourd est présentée. Finalement, le transport collaboratif par deux robots humanoïdes est abordé. Le système développé utilise un contrôleur externe qui planifie la trajectoire des robots et valide la stabilité des déplacements à l’aide d’un modèle dynamique simple du système basé sur des pendules inversés. Tous les algorithmes développés ont été validés et testés sur des robots humanoïdes NAO. Les résultats démontrent qu’il est possible de transporter un objet lourd sans modifier les composantes matérielles des robots, soit en utilisant un chariot ou bien en coopérant avec un autre robot. Les résultats obtenus pourraient s’avérer utiles dans certaines situations réelles telles que les tâches de manutention dans un domaine manufacturier ou bien le transport de blessé sur une civière

    Legged Robots for Object Manipulation: A Review

    Get PDF
    Legged robots can have a unique role in manipulating objects in dynamic, human-centric, or otherwise inaccessible environments. Although most legged robotics research to date typically focuses on traversing these challenging environments, many legged platform demonstrations have also included "moving an object" as a way of doing tangible work. Legged robots can be designed to manipulate a particular type of object (e.g., a cardboard box, a soccer ball, or a larger piece of furniture), by themselves or collaboratively. The objective of this review is to collect and learn from these examples, to both organize the work done so far in the community and highlight interesting open avenues for future work. This review categorizes existing works into four main manipulation methods: object interactions without grasping, manipulation with walking legs, dedicated non-locomotive arms, and legged teams. Each method has different design and autonomy features, which are illustrated by available examples in the literature. Based on a few simplifying assumptions, we further provide quantitative comparisons for the range of possible relative sizes of the manipulated object with respect to the robot. Taken together, these examples suggest new directions for research in legged robot manipulation, such as multifunctional limbs, terrain modeling, or learning-based control, to support a number of new deployments in challenging indoor/outdoor scenarios in warehouses/construction sites, preserved natural areas, and especially for home robotics.Comment: Preprint of the paper submitted to Frontiers in Mechanical Engineerin

    Robonaut Mobile Autonomy: Initial Experiments

    Get PDF
    A mobile version of the NASA/DARPA Robonaut humanoid recently completed initial autonomy trials working directly with humans in cluttered environments. This compact robot combines the upper body of the Robonaut system with a Segway Robotic Mobility Platform yielding a dexterous, maneuverable humanoid ideal for interacting with human co-workers in a range of environments. This system uses stereovision to locate human teammates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form complex behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use

    Secure indoor navigation and operation of mobile robots

    Get PDF
    In future work environments, robots will navigate and work side by side to humans. This raises big challenges related to the safety of these robots. In this Dissertation, three tasks have been realized: 1) implementing a localization and navigation system based on StarGazer sensor and Kalman filter; 2) realizing a human-robot interaction system using Kinect sensor and BPNN and SVM models to define the gestures and 3) a new collision avoidance system is realized. The system works on generating the collision-free paths based on the interaction between the human and the robot.In zukünftigen Arbeitsumgebungen werden Roboter navigieren nebeneinander an Menschen. Das wirft Herausforderungen im Zusammenhang mit der Sicherheit dieser Roboter auf. In dieser Dissertation drei Aufgaben realisiert: 1. Implementierung eines Lokalisierungs und Navigationssystem basierend auf Kalman Filter: 2. Realisierung eines Mensch-Roboter-Interaktionssystem mit Kinect und AI zur Definition der Gesten und 3. ein neues Kollisionsvermeidungssystem wird realisiert. Das System arbeitet an der Erzeugung der kollisionsfreien Pfade, die auf der Wechselwirkung zwischen dem Menschen und dem Roboter basieren

    Modeling And Control For Robotic Assistants: Single And Multi-Robot Manipulation

    Get PDF
    As advances are made in robotic hardware, the complexity of tasks they are capable of performing also increases. One goal of modern robotics is to introduce robotic platforms that require very little augmentation of their environments to be effective and robust. Therefore the challenge for a roboticist is to develop algorithms and control strategies that leverage knowledge of the task while retaining the ability to be adaptive, adjusting to perturbations in the environment and task assumptions. This work considers approaches to these challenges in the context of a wet-lab robotic assistant. The tasks considered are cooperative transport with limited communication between team members, and robot-assisted rapid experiment preparation requiring pouring reagents from open containers useful for research and development scientists. For cooperative transport, robots must be able to plan collision-free trajectories and agree on a final destination to minimize internal forces on the carried load. Robot teammates are considered, where robots must reach consensus to minimize internal forces. The case of a human leader, and robot follower is then considered, where robots must use non-verbal information to estimate the human leader\u27s intended pose for the carried load. For experiment preparation, the robot must pour precisely from open containers with known fluid in a single attempt. Two scenarios examined are when the geometries of the pouring and receiving containers and behaviors are known, and when the pourer must be approximated. An analytical solution is presented for a given geometry in the first instance. In the second instance, a combination of online system identification and leveraging of model priors is used to achieve the precision-pour in a single attempt with considerations for long-term robot deployment. The main contributions of this work are considerations and implementations for making robots capable of performing complex tasks with an emphasis on combining model-based and data-driven approaches for best performance

    Humanoid Robot Cooperative Motion Control Based on Optimal Parameterization

    Get PDF
    The implementation of low-energy cooperative movements is one of the key technologies for the complex control of the movements of humanoid robots. A control method based on optimal parameters is adopted to optimize the energy consumption of the cooperative movements of two humanoid robots. A dynamic model that satisfies the cooperative movements is established, and the motion trajectory of two humanoid robots in the process of cooperative manipulation of objects is planned. By adopting the control method with optimal parameters, the parameters optimization of the energy consumption index function is performed and the stability judgment index of the robot in the movement process is satisfied. Finally, the effectiveness of the method is verified by simulations and experimentations

    Exploring Natural User Abstractions For Shared Perceptual Manipulator Task Modeling & Recovery

    Get PDF
    State-of-the-art domestic robot assistants are essentially autonomous mobile manipulators capable of exerting human-scale precision grasps. To maximize utility and economy, non-technical end-users would need to be nearly as efficient as trained roboticists in control and collaboration of manipulation task behaviors. However, it remains a significant challenge given that many WIMP-style tools require superficial proficiency in robotics, 3D graphics, and computer science for rapid task modeling and recovery. But research on robot-centric collaboration has garnered momentum in recent years; robots are now planning in partially observable environments that maintain geometries and semantic maps, presenting opportunities for non-experts to cooperatively control task behavior with autonomous-planning agents exploiting the knowledge. However, as autonomous systems are not immune to errors under perceptual difficulty, a human-in-the-loop is needed to bias autonomous-planning towards recovery conditions that resume the task and avoid similar errors. In this work, we explore interactive techniques allowing non-technical users to model task behaviors and perceive cooperatively with a service robot under robot-centric collaboration. We evaluate stylus and touch modalities that users can intuitively and effectively convey natural abstractions of high-level tasks, semantic revisions, and geometries about the world. Experiments are conducted with \u27pick-and-place\u27 tasks in an ideal \u27Blocks World\u27 environment using a Kinova JACO six degree-of-freedom manipulator. Possibilities for the architecture and interface are demonstrated with the following features; (1) Semantic \u27Object\u27 and \u27Location\u27 grounding that describe function and ambiguous geometries (2) Task specification with an unordered list of goal predicates, and (3) Guiding task recovery with implied scene geometries and trajectory via symmetry cues and configuration space abstraction. Empirical results from four user studies show our interface was much preferred than the control condition, demonstrating high learnability and ease-of-use that enable our non-technical participants to model complex tasks, provide effective recovery assistance, and teleoperative control
    corecore