3 research outputs found

    Cooperative transport in swarm robotics. Multi object transportation

    Get PDF
    Swarm robotics is a research field inspired from the natural behavior of ants, bees or fish in their natural habitat. Each group display swarm behavior in different ways. For example, ants use pheromones to trace one another in order to find a nest, reach a food source or do any operation, while bees use dance moves to attract one another to the desired place. In swarm robotics, small robots attempt to mimic insect behavior. The robotic swarm group collaborate to perform a task and collectively solve a given problem. In the process, the robots use the sensors they are equipped with to move, communicate or avoid obstacles until they collectively do the desired functionality. In this thesis, we propose a modification to the Robotic Darwinian Particle Swarm Optimization (RDPSO) algorithm. In the RDPSO, robots deployed in a rescue operation, transport one object at a time to a desired safe place. In our algorithm, we simultaneously transport multiple objects to safety. We call our algorithm Multi Robotics Darwinian Particle Swarm Optimization (MRDPSO). Our algorithm is developed and implemented on a VREP simulator using ePuck robots as swarm members. We test our algorithm using two different environment sizes complete with obstacles. First implementation is for two simultaneous object transported but can be extended to more than two. We compare our new algorithm to the results of single RDPSO and found our algorithm to be 35 to 41 % faster. We also compared our results to those obtained from three selected papers that are Ghosh, Konar, and Janarthanan [1], TORABI [2], and Kube and Bonabeau [3]. The performance measures we compare to are the accuracy of transporting all objects to desired location, and the time efficiency of transporting all the objects in our new system

    Evolutionary strategies in swarm robotics controllers

    Get PDF
    Nowadays, Unmanned Vehicles (UV) are widespread around the world. Most of these vehicles require a great level of human control, and mission success is reliant on this dependency. Therefore, it is important to use machine learning techniques that will train the robotic controllers to automate the control, making the process more efficient. Evolutionary strategies may be the key to having robust and adaptive learning in robotic systems. Many studies involving UV systems and evolutionary strategies have been conducted in the last years, however, there are still research gaps that need to be addressed, such as the reality gap. The reality gap occurs when controllers trained in simulated environments fail to be transferred to real robots. This work proposes an approach for solving robotic tasks using realistic simulation and using evolutionary strategies to train controllers. The chosen setup is easily scalable for multirobot systems or swarm robots. In this thesis, the simulation architecture and setup are presented, including the drone simulation model and software. The drone model chosen for the simulations is available in the real world and widely used, such as the software and flight control unit. This relevant factor makes the transition to reality smoother and easier. Controllers using behavior trees were evolved using a developed evolutionary algorithm, and several experiments were conducted. Results demonstrated that it is possible to evolve a robotic controller in realistic simulation environments, using a simulated drone model that exists in the real world, and also the same flight control unit and operating system that is generally used in real world experiments.Atualmente os Veículos Não Tripulados (VNT) encontram-se difundidos por todo o Mundo. A maioria destes veículos requerem um elevado controlo humano, e o sucesso das missões está diretamente dependente deste fator. Assim, é importante utilizar técnicas de aprendizagem automática que irão treinar os controladores dos VNT, de modo a automatizar o controlo, tornando o processo mais eficiente. As estratégias evolutivas podem ser a chave para uma aprendizagem robusta e adaptativa em sistemas robóticos. Vários estudos têm sido realizados nos últimos anos, contudo, existem lacunas que precisam de ser abordadas, tais como o reality gap. Este facto ocorre quando os controladores treinados em ambientes simulados falham ao serem transferidos para VNT reais. Este trabalho propõe uma abordagem para a resolução de missões com VNT, utilizando um simulador realista e estratégias evolutivas para treinar controladores. A arquitetura escolhida é facilmente escalável para sistemas com múltiplos VNT. Nesta tese, é apresentada a arquitetura e configuração do ambiente de simulação, incluindo o modelo e software de simulação do VNT. O modelo de VNT escolhido para as simulações é um modelo real e amplamente utilizado, assim como o software e a unidade de controlo de voo. Este fator é relevante e torna a transição para a realidade mais suave. É desenvolvido um algoritmo evolucionário para treinar um controlador, que utiliza behavior trees, e realizados diversos testes. Os resultados demonstram que é possível evoluir um controlador em ambientes de simulação realistas, utilizando um VNT simulado mas real, assim como utilizando as mesmas unidades de controlo de voo e software que são amplamente utilizados em ambiente real

    Cooperative Transport by a Swarm Robotic System Based on CMA-NeuroES Approach

    No full text
    corecore