901 research outputs found

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    A Context-aware Trust Framework for Resilient Distributed Cooperative Spectrum Sensing in Dynamic Settings

    Get PDF
    Cognitive radios enable dynamic spectrum access where secondary users (SUs) are allowed to operate on the licensed spectrum bands on an opportunistic noninterference basis. Cooperation among the SUs for spectrum sensing is essential for environments with deep shadows. In this paper, we study the adverse effect of insistent spectrum sensing data falsification (ISSDF) attack on iterative distributed cooperative spectrum sensing. We show that the existing trust management schemes are not adequate in mitigating ISSDF attacks in dynamic settings where the primary user (PU) of the band frequently transitions between active and inactive states. We propose a novel context-aware distributed trust framework for cooperative spectrum sensing in mobile cognitive radio ad hoc networks (CRAHN) that effectively alleviates different types of ISSDF attacks (Always-Yes, Always-No, and fabricating) in dynamic scenarios. In the proposed framework, the SU nodes evaluate the trustworthiness of one another based on the two possible contexts in which they make observations from each other: PU absent context and PU present context. We evaluate the proposed context-aware scheme and compare it against the existing context-oblivious trust schemes using theoretical analysis and extensive simulations of realistic scenarios of mobile CRAHNs operating in TV white space. We show that in the presence of a large set of attackers (as high as 60% of the network), the proposed context-aware trust scheme successfully mitigates the attacks and satisfy the false alarm and missed-detection rates of 10−210^{-2} and lower. Moreover, we show that the proposed scheme is scalable in terms of attack severity, SU network density, and the distance of the SU network to the PU transmitter

    Reinforcement learning-based trust and reputation model for spectrum leasing in cognitive radio networks

    Get PDF
    Cognitive Radio (CR), which is the next generation wireless communication system, enables unlicensed users or Secondary Users (SUs) to exploit underutilized spectrum (called white spaces) owned by the licensed users or Primary Users(PUs) so that bandwidth availability improves at the SUs, which helps to improve the overall spectrum utilization. Collaboration, which has been adopted in various schemes such distributed channel sensing and channel access, is an intrinsic characteristic of CR to improve network performance. However, the requirement to collaborate has inevitably open doors to various forms of attacks by malicious SUs, and this can be addressed using Trust and Reputation Management (TRM). Generally speaking, TRM detects malicious SUs including honest SUs that turn malicious. To achieve a more efficient detection, we advocate the use of Reinforcement Learning (RL), which is known to be flexible and adaptable to the changes in operating environment in order to achieve optimal network performance. Its ability to learn and re-learn throughout the duration of its existence provides intelligence to the proposed TRM model, and so the focus on RL-based TRM model in this paper. Our preliminary results show that the detection performance of RLbased TRM model has an improvement of 15% over the traditional TRM in a centralized cognitive radio network. The investigation in the paper serves as an important foundation for future work in this research field

    A Study on Techniques/Algorithms used for Detection and Prevention of Security Attacks in Cognitive Radio Networks

    Get PDF
    In this paper a detailed survey is carried out on the taxonomy of Security Issues, Advances on Security Threats and Countermeasures ,A Cross-Layer Attack, Security Status and Challenges for Cognitive Radio Networks, also a detailed survey on several Algorithms/Techniques used to detect and prevent SSDF(Spectrum Sensing Data Falsification) attack a type of DOS (Denial of Service) attack and several other  Network layer attacks in Cognitive Radio Network or Cognitive Radio Wireless Sensor Node Networks(WSNN’s) to analyze the advantages and disadvantages of those existing algorithms/techniques

    Detection And Prevention Of Types Of Attacks Using Machine Learning Techniques In Cognitive Radio Networks

    Get PDF
    A number of studies have been done on several types of data link and network layer attacks and defenses for CSS in CRNs, but there are still a number of challenges unsolved and open issues waiting for solutions. Specifically, from the perspective of attackers, when launching the attack, users have to take into account of the factors of attack gain, attack cost and attack risk, together.  From the perspective of defenders, there are also three aspects deserving consideration: defense reliability, defense efficiency and defense universality. The attacks and defenses are mutually coupled from each other. Attackers need to adjust their strategies to keep their negative effects on final decisions and avoid defenders’ detection, while defenders have to learn and analyze attack behaviors and designs effective defense rules. Indeed, attack and defense ought to be considered together. the proposed methodology overcomes the problems of several data link and network layer attacks and it effects in CSS(Co-operative Spectrum Sensing) of CNRs using Machine Learning based Defense, Cross layers optimization techniques and Defence based Prevention mechanisms

    Performance Analysis of Secondary Users in Heterogeneous Cognitive Radio Network

    Get PDF
    Continuous increase in wireless subscriptions and static allocation of wireless frequency bands to the primary users (PUs) are fueling the radio frequency (RF) shortage problem. Cognitive radio network (CRN) is regarded as a solution to this problem as it utilizes the scarce RF in an opportunisticmanner to increase the spectrumefficiency. InCRN, secondary users (SUs) are allowed to access idle frequency bands opportunistically without causing harmful interference to the PUs. In CRN, the SUs determine the presence of PUs through spectrum sensing and access idle bands by means of dynamic spectrum access. Spectrum sensing techniques available in the literature do not consider mobility. One of the main objectives of this thesis is to include mobility of SUs in spectrum sensing. Furthermore, due to the physical characteristics of CRN where licensed RF bands can be dynamically accessed by various unknown wireless devices, security is a growing concern. This thesis also addresses the physical layer security issues in CRN. Performance of spectrum sensing is evaluated based on probability of misdetection and false alarm, and expected overlapping time, and performance of SUs in the presence of attackers is evaluated based on secrecy rates

    Affirmed Crowd Sensor Selection based Cooperative Spectrum Sensing

    Get PDF
    The Cooperative Spectrum sensing model is gaining importance among the cognitive radio network sharing groups. While the crowd-sensing model (technically the cooperative spectrum sensing) model has positive developments, one of the critical challenges plaguing the model is the false or manipulated crowd sensor data, which results in implications for the secondary user’s network. Considering the efficacy of the spectrum sensing by crowd-sensing model, it is vital to address the issues of falsifications and manipulations, by focusing on the conditions of more accurate determination models. Concerning this, a method of avoiding falsified crowd sensors from the process of crowd sensors centric cooperative spectrum sensing has portrayed in this article. The proposal is a protocol that selects affirmed crowd sensor under diversified factors of the decision credibility about spectrum availability. An experimental study is a simulation approach that evincing the competency of the proposal compared to the other contemporary models available in recent literature
    • …
    corecore