248 research outputs found

    Cooperative spectrum sensing with secondary user selection for cognitive radio networks over Nakagami-m fading channels

    Get PDF
    This paper investigates cooperative spectrum sensing (CSS) in cognitive wireless radio networks (CWRNs). A practical system is considered where all channels experience Nakagami-mm fading and suffer from background noise. The realisation of the CSS can follow two approaches where the final spectrum decision is based on either only the global decision at fusion centre (FC) or both decisions from the FC and secondary user (SU). By deriving closed-form expressions and bounds of missed detection probability (MDP) and false alarm probability (FAP), we are able to not only demonstrate the impacts of the mm-parameter on the sensing performance but also evaluate and compare the effectiveness of the two CSS schemes with respect to various fading parameters and the number of SUs. It is interestingly noticed that a smaller number of SUs could be selected to achieve the lower bound of the MDP rather using all the available SUs while still maintaining a low FAP. As a second contribution, we propose a secondary user selection algorithm for the CSS to find the optimised number of SUs for lower complexity and reduced power consumption. Finally, numerical results are provided to demonstrate the findings

    Cooperative spectrum sensing with secondary user selection for cognitive radio networks over Nakagami-m fading channels

    Get PDF
    This paper investigates cooperative spectrum sensing (CSS) in cognitive wireless radio networks (CWRNs). A practical system is considered where all channels experience Nakagami-mm fading and suffer from background noise. The realisation of the CSS can follow two approaches where the final spectrum decision is based on either only the global decision at fusion centre (FC) or both decisions from the FC and secondary user (SU). By deriving closed-form expressions and bounds of missed detection probability (MDP) and false alarm probability (FAP), we are able to not only demonstrate the impacts of the mm-parameter on the sensing performance but also evaluate and compare the effectiveness of the two CSS schemes with respect to various fading parameters and the number of SUs. It is interestingly noticed that a smaller number of SUs could be selected to achieve the lower bound of the MDP rather using all the available SUs while still maintaining a low FAP. As a second contribution, we propose a secondary user selection algorithm for the CSS to find the optimised number of SUs for lower complexity and reduced power consumption. Finally, numerical results are provided to demonstrate the findings

    Entropy and Energy Detection-based Spectrum Sensing over F Composite Fading Channels

    Get PDF
    In this paper, we investigate the performance of energy detection-based spectrum sensing over F composite fading channels. To this end, an analytical expression for the average detection probability is firstly derived. This expression is then extended to account for collaborative spectrum sensing, square-law selection diversity reception and noise power uncertainty. The corresponding receiver operating characteristics (ROC) are analyzed for different conditions of the average signal-to-noise ratio (SNR), noise power uncertainty, time-bandwidth product, multipath fading, shadowing, number of diversity branches and number of collaborating users. It is shown that the energy detection performance is sensitive to the severity of the multipath fading and amount of shadowing, whereby even small variations in either of these physical phenomena can significantly impact the detection probability. As a figure of merit to evaluate the detection performance, the area under the ROC curve (AUC) is derived and evaluated for different multipath fading and shadowing conditions. Closed-form expressions for the Shannon entropy and cross entropy are also formulated and assessed for different average SNR, multipath fading and shadowing conditions. Then the relationship between the Shannon entropy and ROC/AUC is examined where it is found that the average number of bits required for encoding a signal becomes small (i.e., low Shannon entropy) when the detection probability is high or when the AUC is large. The difference between composite and traditional small-scale fading is emphasized by comparing the cross entropy for Rayleigh and Nakagami-m fading. A validation of the analytical results is provided through a careful comparison with the results of some simulations.Comment: 30 pages, 11 figures, 1 table, Submitted to IEEE TCO
    corecore