2,810 research outputs found

    Cooperative Wideband Spectrum Sensing Based on Joint Sparsity

    Get PDF
    COOPERATIVE WIDEBAND SPECTRUM SENSING BASED ON JOINT SPARSITY By Ghazaleh Jowkar, Master of Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University Virginia Commonwealth University 2017 Major Director: Dr. Ruixin Niu, Associate Professor of Department of Electrical and Computer Engineering In this thesis, the problem of wideband spectrum sensing in cognitive radio (CR) networks using sub-Nyquist sampling and sparse signal processing techniques is investigated. To mitigate multi-path fading, it is assumed that a group of spatially dispersed SUs collaborate for wideband spectrum sensing, to determine whether or not a channel is occupied by a primary user (PU). Due to the underutilization of the spectrum by the PUs, the spectrum matrix has only a small number of non-zero rows. In existing state-of-the-art approaches, the spectrum sensing problem was solved using the low-rank matrix completion technique involving matrix nuclear-norm minimization. Motivated by the fact that the spectrum matrix is not only low-rank, but also sparse, a spectrum sensing approach is proposed based on minimizing a mixed-norm of the spectrum matrix instead of low-rank matrix completion to promote the joint sparsity among the column vectors of the spectrum matrix. Simulation results are obtained, which demonstrate that the proposed mixed-norm minimization approach outperforms the low-rank matrix completion based approach, in terms of the PU detection performance. Further we used mixed-norm minimization model in multi time frame detection. Simulation results shows that increasing the number of time frames will increase the detection performance, however, by increasing the number of time frames after a number of times the performance decrease dramatically

    Energy Detection of Unknown Signals over Cascaded Fading Channels

    Full text link
    Energy detection is a favorable mechanism in several applications relating to the identification of deterministic unknown signals such as in radar systems and cognitive radio communications. The present work quantifies the detrimental effects of cascaded multipath fading on energy detection and investigates the corresponding performance capability. A novel analytic solution is firstly derived for a generic integral that involves a product of the Meijer G−G-function, the Marcum Q−Q-function and arbitrary power terms. This solution is subsequently employed in the derivation of an exact closed-form expression for the average probability of detection of unknown signals over NN*Rayleigh channels. The offered results are also extended to the case of square-law selection, which is a relatively simple and effective diversity method. It is shown that the detection performance is considerably degraded by the number of cascaded channels and that these effects can be effectively mitigated by a non-substantial increase of diversity branches.Comment: 12 page

    Analytic solutions to a Marcum Q-function-based integral and application in energy detection of unknown signals over multipath fading channels

    Full text link
    This work presents analytic solutions for a useful integral in wireless communications, which involves the Marcum Q−Q{-}function in combination with an exponential function and arbitrary power terms. The derived expressions have a rather simple algebraic representation which renders them convenient both analytically and computationally. Furthermore, they can be useful in wireless communications and particularly in the context of cognitive radio communications and radar systems, where this integral is often encountered. To this end, we derive novel expressions for the probability of detection in energy detection based spectrum sensing over η−μ\eta{-}\mu fading channels. These expressions are given in closed-form and are subsequently employed in analyzing the effects of generalised multipath fading conditions in cognitive radio systems. As expected, it is shown that the detector is highly dependent upon the severity of fading conditions as even slight variation of the fading parameters affect the corresponding performance significantly.Comment: Latest/Preprint Versio
    • …
    corecore