4,121 research outputs found

    Development of personal area network (PAN) for mobile robot using bluetooth transceiver

    Get PDF
    The work presents the concept of providing a Personal Area Network (PAN) for microcontroller based mobile robots using Bluetooth transceiver. With the concept of replacing cable, low cost, low power consumption and communication range between 10m to 100m, Bluetooth is suitable for communication between mobile robots since most mobile robots are powered by batteries and have high mobility. The network aimed to support real-time control of up to two mobile robots from a master mobile robot through communication using Bluetooth transceiver. If a fast network radio link is implemented, a whole new world of possibilities is opened in the research of robotics control and Artificial Intelligence (AI) research works, sending real time image and information. Robots could communicate through obstacles or even through walls. Bluetooth Ad Hoc topology provides a simple communication between devices in close by forming PAN. A system contained of both hardware and software is designed to enable the robots to form a PAN and communicating, sharing information. Three microcontroller based mobile robots are built for this research work. Bluetooth Protocol Stack and mobile robot control architecture is implemented on a single microcontroller chip. The PAN enabled a few mobile robots to communicate with each other to complete a given task. The wireless communication between mobile robots is reliable based from the result of experiments carried out. Thus this is a platform for multi mobile robots system and Ad Hoc networking system. Results from experiments show that microcontroller based mobile robots can easily form a Bluetooth PAN and communicate with each other

    Online Visual Robot Tracking and Identification using Deep LSTM Networks

    Full text link
    Collaborative robots working on a common task are necessary for many applications. One of the challenges for achieving collaboration in a team of robots is mutual tracking and identification. We present a novel pipeline for online visionbased detection, tracking and identification of robots with a known and identical appearance. Our method runs in realtime on the limited hardware of the observer robot. Unlike previous works addressing robot tracking and identification, we use a data-driven approach based on recurrent neural networks to learn relations between sequential inputs and outputs. We formulate the data association problem as multiple classification problems. A deep LSTM network was trained on a simulated dataset and fine-tuned on small set of real data. Experiments on two challenging datasets, one synthetic and one real, which include long-term occlusions, show promising results.Comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017. IROS RoboCup Best Paper Awar

    Individual and coordinated decision for the CAMBADA team

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaA coordenação em sistemas multi-robô é um aspecto crucial no futebol robótico. A maneira como cada equipa coordena cada um dos seus robôs em acções cooperativas define a base da sua estratégia. Este trabalho tem como foco o desenvolvimento da coordenação e estratégia da equipa CAMBADA. CAMBADA é a equipa de futebol robótico da modalidade RoboCup Middle Size League da Universidade de Aveiro. Foi desenvolvida pelo grupo ATRI, pertencente µa unidade de investigação IEETA. O presente trabalho baseia-se em trabalho desenvolvido anteriormente, tentando melhorar o desempenho da equipa. Cada robô da equipa CAMBADA é um agente independente e autónomo capaz de coordenar as suas acções com os colegas de equipa através da comunicação e da partilha de informação. O comportamento de cada robô deverá ser integrado na estratégia global da equipa, resultando assim em acções cooperativas de todos os robôs. Isto é conseguido através do uso de papeis(roles) e comportamentos(behaviours) que definem a atitude de cada robô e as acções que daí resultam. Novos papeis foram desenvolvidos para complementar a estratégia de equipa, e alguns dos papeis existentes foram melhorados. Também foram efectuadas melhorias em alguns dos comportamentos existentes. É efectu- ada a descrição de cada um destes papeis e comportamentos, assim como as alterações efectuadas. O trabalho desenvolvido foi testado nas competições do Robótica 2008 (o desenvolvimento não estava ainda concluído) e por fim nas competições do RoboCup'2008. A participação da equipa no RoboCup'2008 é analisada e discutida. A equipa consagrou-se campeã mundial, vencendo a competição da Middle Size League do RoboCup'2008 em Suzhou, China. ABSTRACT: Multi-robot coordination is one crucial aspect in robotic soccer. The way each team coordinates its individual robots into cooperative global actions define the foundation of its strategy. CAMBADA is the RoboCup Middle Size League robotic soccer team of the University of Aveiro. It was created by the ATRI group, part of the IEETA research unit. This work is focused on coordination and strategy development for the CAMBADA team. It is built upon previous work and tries to improve the team performance further. In CAMBADA each robot is an independent agent, it coordinates its actions with its teammates through communication and information exchange. The resulting behaviour of the individual robot should be integrated into the global team strategy, thus resulting in cooperative actions by all the robots. This is done by the use of roles and behaviours that define each robot attitude in the field and resulting individual actions. In this work, new roles were created to add to the team strategy and some of the previous existing roles were improved. Some of the existing behaviours were also improved to better fit the desired goals. Each role and behaviour is described as well as the changes made. The resulting work was put to test in the portuguese Robotica 2008 competition (while still in progress) and finally in the RoboCup'2008 world competitions. The performance of the team in the latter is analysed and discussed. The team achieved the 1st place in the RoboCup'2008 MSL world competitions

    RoboCup Soccer Leagues

    Get PDF
    RoboCup was created in 1996 by a group of Japanese, American, and European Artificial Intelligence and Robotics researchers with a formidable, visionary long-term challenge: “By 2050 a team of robot soccer players will beat the human World Cup champion team.” At that time, in the mid 90s, when there were very few effective mobile robots and the Honda P2 humanoid robot was presented to a stunning public for the first time also in 1996, the RoboCup challenge, set as an adversarial game between teams of autonomous robots, was fascinating and exciting. RoboCup enthusiastically and concretely introduced three robot soccer leagues, namely “Simulation,” “Small-Size,” and “Middle-Size,” as we explain below, and organized its first competitions at IJCAI’97 in Nagoya with a surprising number of 100 participants [RC97]. It was the beginning of what became a continously growing research community. RoboCup established itself as a structured organization (the RoboCup Federation www.RoboCup.org). RoboCup fosters annual competition events, where the scientific challenges faced by the researchers are addressed in a setting that is attractive also to the general public. and the RoboCup events are the ones most popular and attended in the research fields of AI and Robotics.RoboCup further includes a technical symposium with contributions relevant to the RoboCup competitions and beyond to the general AI and robotics
    corecore