287 research outputs found

    Smartphone-based vehicle telematics: a ten-year anniversary

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordJust as it has irrevocably reshaped social life, the fast growth of smartphone ownership is now beginning to revolutionize the driving experience and change how we think about automotive insurance, vehicle safety systems, and traffic research. This paper summarizes the first ten years of research in smartphone-based vehicle telematics, with a focus on user-friendly implementations and the challenges that arise due to the mobility of the smartphone. Notable academic and industrial projects are reviewed, and system aspects related to sensors, energy consumption, and human-machine interfaces are examined. Moreover, we highlight the differences between traditional and smartphone-based automotive navigation, and survey the state of the art in smartphone-based transportation mode classification, vehicular ad hoc networks, cloud computing, driver classification, and road condition monitoring. Future advances are expected to be driven by improvements in sensor technology, evidence of the societal benefits of current implementations, and the establishment of industry standards for sensor fusion and driver assessment

    “Uso de algoritmos para la identificación de imperfecciones en la calzada: Un mapeo sistemático”

    Get PDF
    La gran mayoría de los accidentes de tránsito son provocados por las imperfecciones en la calzada, por este motivo se ha ido adaptando diferentes algoritmos de inteligencia artificial para su detección. El propósito de este trabajo se centra en el desarrollo de un análisis de la literatura del periodo comprendido entre las dos últimas décadas que incluye temas relacionados con el uso de algoritmos de inteligencia artificial para la identificación de imperfecciones en la calzada. La metodología empleada en este trabajo se basa en técnicas de Mapeo Sistemático, un proceso que consta de tres etapas: Definiciones de Protocolo, Ejecuciones de Búsqueda y Discusión de Resultados. Como resultado de este análisis, se obtuvieron 74 artículos relevantes de acuerdo a los criterios de inclusión donde se proponen 41 algoritmos y tres enfoques de identificación de imperfecciones en la calzada, con porcentajes de exactitud desde el 95.45% hasta el 99.8%. Mismos que fueron obtenidos de repositorios como SciencieDirect, IEEE y Scopus.The vast majority of traffic accidents are caused by imperfections in the road, for this reason different artificial intelligence algorithms have been adapted for their detection. The purpose of this work is focused on the development of an analysis of the literature of the period between the last two decades that includes topics related to the use of artificial intelligence algorithms for the identification of imperfections in the road. The methodology used in this work is based on Systematic Mapping techniques, a process that consists of three stages: Protocol Definitions, Search Executions and Results Discussion. As a result of this analysis, 74 relevant articles were obtained according to the inclusion criteria where 41 algorithms and three approaches to identify imperfections in the road are proposed, with percentages of accuracy from 95.45% to 99.8%. The same ones that were obtained from repositories such as SciencieDirect, IEEE and Scopus

    Low-cost deep learning UAV and Raspberry Pi solution to real time pavement condition assessment

    Get PDF
    In this thesis, a real-time and low-cost solution to the autonomous condition assessment of pavement is proposed using deep learning, Unmanned Aerial Vehicle (UAV) and Raspberry Pi tiny computer technologies, which makes roads maintenance and renovation management more efficient and cost effective. A comparison study was conducted to compare the performance of seven different combinations of meta-architectures for pavement distress classification. It was observed that real-time object detection architecture SSD with MobileNet feature extractor is the best combination for real-time defect detection to be used by tiny computers. A low-cost Raspberry Pi smart defect detector camera was configured using the trained SSD MobileNet v1, which can be deployed with UAV for real-time and remote pavement condition assessment. The preliminary results show that the smart pavement detector camera achieves an accuracy of 60% at 1.2 frames per second in raspberry pi and 96% at 13.8 frames per second in CPU-based computer

    Developments in Estimation and Control for Cloud-Enabled Automotive Vehicles.

    Full text link
    Cloud computing is revolutionizing access to distributed information and computing resources that can facilitate future data and computation intensive vehicular control functions and improve vehicle driving comfort and safety. This dissertation investigates several potential Vehicle-to-Cloud-to-Vehicle (V2C2V) applications that can enhance vehicle control and enable additional functionalities by integrating onboard and cloud resources. Firstly, this thesis demonstrates that onboard vehicle sensors can be used to sense road profiles and detect anomalies. This information can be shared with other vehicles and transportation authorities within a V2C2V framework. The response of hitting a pothole is characterized by a multi-phase dynamic model which is validated by comparing simulation results with a higher-fidelity commercial modeling package. A novel framework of simultaneous road profile estimation and anomaly detection is developed by combining a jump diffusion process (JDP)-based estimator and a multi-input observer. The performance of this scheme is evaluated in an experimental vehicle. In addition, a new clustering algorithm is developed to compress anomaly information by processing anomaly report streams. Secondly, a cloud-aided semi-active suspension control problem is studied demonstrating for the first time that road profile information and noise statistics from the cloud can be used to enhance suspension control. The problem of selecting an optimal damping mode from a finite set of damping modes is considered and the best mode is selected based on performance prediction on the cloud. Finally, a cloud-aided multi-metric route planner is investigated in which safety and comfort metrics augment traditional planning metrics such as time, distance, and fuel economy. The safety metric is developed by processing a comprehensive road and crash database while the comfort metric integrates road roughness and anomalies. These metrics and a planning algorithm can be implemented on the cloud to realize the multi-metric route planning. Real-world case studies are presented. The main contribution of this part of the dissertation is in demonstrating the feasibility and benefits of enhancing the existing route planning algorithms with safety and comfort metrics.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120710/1/zhaojli_1.pd

    Sensing vehicle dynamics for determining driver phone use

    Full text link
    This paper utilizes smartphone sensing of vehicle dynamics to de-termine driver phone use, which can facilitate many traffic safety applications. Our system uses embedded sensors in smartphones, i.e., accelerometers and gyroscopes, to capture differences in cen-tripetal acceleration due to vehicle dynamics. These differences combined with angular speed can determine whether the phone is on the left or right side of the vehicle. Our low infrastructure ap-proach is flexible with different turn sizes and driving speeds. Ex-tensive experiments conducted with two vehicles in two different cities demonstrate that our system is robust to real driving envi-ronments. Despite noisy sensor readings from smartphones, our approach can achieve a classification accuracy of over 90 % with a false positive rate of a few percent. We also find that by combining sensing results in a few turns, we can achieve better accuracy (e.g., 95%) with a lower false positive rate

    A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure

    Get PDF
    To ensure the safety and the serviceability of civil infrastructure it is essential to visually inspect and assess its physical and functional condition. This review paper presents the current state of practice of assessing the visual condition of vertical and horizontal civil infrastructure; in particular of reinforced concrete bridges, precast concrete tunnels, underground concrete pipes, and asphalt pavements. Since the rate of creation and deployment of computer vision methods for civil engineering applications has been exponentially increasing, the main part of the paper presents a comprehensive synthesis of the state of the art in computer vision based defect detection and condition assessment related to concrete and asphalt civil infrastructure. Finally, the current achievements and limitations of existing methods as well as open research challenges are outlined to assist both the civil engineering and the computer science research community in setting an agenda for future research
    corecore