1,921 research outputs found

    Cooperative Game Theory within Multi-Agent Systems for Systems Scheduling

    Get PDF
    Research concerning organization and coordination within multi-agent systems continues to draw from a variety of architectures and methodologies. The work presented in this paper combines techniques from game theory and multi-agent systems to produce self-organizing, polymorphic, lightweight, embedded agents for systems scheduling within a large-scale real-time systems environment. Results show how this approach is used to experimentally produce optimum real-time scheduling through the emergent behavior of thousands of agents. These results are obtained using a SWARM simulation of systems scheduling within a High Energy Physics experiment consisting of 2500 digital signal processors.Comment: Fourth International Conference on Hybrid Intelligent Systems (HIS), Kitakyushu, Japan, December, 200

    A new model for solution of complex distributed constrained problems

    Full text link
    In this paper we describe an original computational model for solving different types of Distributed Constraint Satisfaction Problems (DCSP). The proposed model is called Controller-Agents for Constraints Solving (CACS). This model is intended to be used which is an emerged field from the integration between two paradigms of different nature: Multi-Agent Systems (MAS) and the Constraint Satisfaction Problem paradigm (CSP) where all constraints are treated in central manner as a black-box. This model allows grouping constraints to form a subset that will be treated together as a local problem inside the controller. Using this model allows also handling non-binary constraints easily and directly so that no translating of constraints into binary ones is needed. This paper presents the implementation outlines of a prototype of DCSP solver, its usage methodology and overview of the CACS application for timetabling problems

    Bio-inspired multi-agent systems for reconfigurable manufacturing systems

    Get PDF
    The current market’s demand for customization and responsiveness is a major challenge for producing intelligent, adaptive manufacturing systems. The Multi-Agent System (MAS) paradigm offers an alternative way to design this kind of system based on decentralized control using distributed, autonomous agents, thus replacing the traditional centralized control approach. The MAS solutions provide modularity, flexibility and robustness, thus addressing the responsiveness property, but usually do not consider true adaptation and re-configuration. Understanding how, in nature, complex things are performed in a simple and effective way allows us to mimic nature’s insights and develop powerful adaptive systems that able to evolve, thus dealing with the current challenges imposed on manufactur- ing systems. The paper provides an overview of some of the principles found in nature and biology and analyses the effectiveness of bio-inspired methods, which are used to enhance multi-agent systems to solve complex engineering problems, especially in the manufacturing field. An industrial automation case study is used to illustrate a bio-inspired method based on potential fields to dynamically route pallets
    • …
    corecore