1,137 research outputs found

    Teleoperating a mobile manipulator and a free-flying camera from a single haptic device

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe paper presents a novel teleoperation system that allows the simultaneous and continuous command of a ground mobile manipulator and a free flying camera, implemented using an UAV, from which the operator can monitor the task execution in real-time. The proposed decoupled position and orientation workspace mapping allows the teleoperation from a single haptic device with bounded workspace of a complex robot with unbounded workspace. When the operator is reaching the position and orientation boundaries of the haptic workspace, linear and angular velocity components are respectively added to the inputs of the mobile manipulator and the flying camera. A user study on a virtual environment has been conducted to evaluate the performance and the workload on the user before and after proper training. Analysis on the data shows that the system complexity is not an obstacle for an efficient performance. This is a first step towards the implementation of a teleoperation system with a real mobile manipulator and a low-cost quadrotor as the free-flying camera.Accepted versio

    Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    Get PDF
    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested

    Sensor Augmented Virtual Reality Based Teleoperation Using Mixed Autonomy

    Get PDF
    A multimodal teleoperation interface is introduced, featuring an integrated virtual reality (VR) based simulation augmented by sensors and image processing capabilities onboard the remotely operated vehicle. The proposed virtual reality interface fuses an existing VR model with live video feed and prediction states, thereby creating a multimodal control interface. VR addresses the typical limitations of video based teleoperation caused by signal lag and limited field of view, allowing the operator to navigate in a continuous fashion. The vehicle incorporates an onboard computer and a stereo vision system to facilitate obstacle detection. A vehicle adaptation system with a priori risk maps and a real-state tracking system enable temporary autonomous operation of the vehicle for local navigation around obstacles and automatic re-establishment of the vehicle’s teleoperated state. The system provides real time update of the virtual environment based on anomalies encountered by the vehicle. The VR based multimodal teleoperation interface is expected to be more adaptable and intuitive when compared with other interfaces

    A Distributed Software Architecture for Collaborative Teleoperation based on a VR Platform and Web Application Interoperability

    Full text link
    Augmented Reality and Virtual Reality can provide to a Human Operator (HO) a real help to complete complex tasks, such as robot teleoperation and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robot simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on different Mobile platforms to control one or many robots

    A New Virtual Reality Interface for Underwater Intervention Missions

    Get PDF
    Ponencia presentada en IFAC-PapersOnLine, Volume 53, Issue 2, 2020, Pages 14600-14607Nowadays, most underwater intervention missions are developed through the well-known work-class ROVs (Remote Operated Vehicles), equipped with teleoperated arms under human supervision. Thus, despite the appearance on the market of the first prototypes of the so-called I-AUV (Autonomous Underwater Vehicles for Intervention), the most mature technology associated with ROVs continues to be trusted. In order to fill the gap between ROVs and incipient I-AUVs technology, new research is under progress in our laboratory. In particular, new HRI (Human Robot Interaction) capabilities are being tested inside a three-year Spanish coordinated project focused on cooperative underwater intervention missions. In this work new results are presented concerning a new user interface which includes immersion capabilities through Virtual Reality (VR) technology. It is worth noting that a new HRI module has been demonstrated, through a pilot study, in which the users had to solve some specific tasks, with minimum guidance and instructions, following simple Problem Based Learning (PBL) scheme. Finally, it is noticeable that, although this is only a work in progress, the obtained results are promising concerning friendly and intuitive characteristics of the developed HRI module. Thus, some critical aspects, like complexity fall, training time and cognitive fatigue of the ROV pilot, seem more affordable now

    A Classification of Human-to-Human Communication during the Use of Immersive Teleoperation Interfaces

    Get PDF
    • …
    corecore