1,487 research outputs found

    Few Shot Network Compression via Cross Distillation

    Full text link
    Model compression has been widely adopted to obtain light-weighted deep neural networks. Most prevalent methods, however, require fine-tuning with sufficient training data to ensure accuracy, which could be challenged by privacy and security issues. As a compromise between privacy and performance, in this paper we investigate few shot network compression: given few samples per class, how can we effectively compress the network with negligible performance drop? The core challenge of few shot network compression lies in high estimation errors from the original network during inference, since the compressed network can easily over-fits on the few training instances. The estimation errors could propagate and accumulate layer-wisely and finally deteriorate the network output. To address the problem, we propose cross distillation, a novel layer-wise knowledge distillation approach. By interweaving hidden layers of teacher and student network, layer-wisely accumulated estimation errors can be effectively reduced.The proposed method offers a general framework compatible with prevalent network compression techniques such as pruning. Extensive experiments on benchmark datasets demonstrate that cross distillation can significantly improve the student network's accuracy when only a few training instances are available.Comment: AAAI 202

    Joint Device-Edge Digital Semantic Communication with Adaptive Network Split and Learned Non-Linear Quantization

    Full text link
    Semantic communication, an intelligent communication paradigm that aims to transmit useful information in the semantic domain, is facilitated by deep learning techniques. Although robust semantic features can be learned and transmitted in an analog fashion, it poses new challenges to hardware, protocol, and encryption. In this paper, we propose a digital semantic communication system, which consists of an encoding network deployed on a resource-limited device and a decoding network deployed at the edge. To acquire better semantic representation for digital transmission, a novel non-linear quantization module is proposed with the trainable quantization levels that efficiently quantifies semantic features. Additionally, structured pruning by a sparse scaling vector is incorporated to reduce the dimension of the transmitted features. We also introduce a semantic learning loss (SLL) function to reduce semantic error. To adapt to various channel conditions and inputs under constraints of communication and computing resources, a policy network is designed to adaptively choose the split point and the dimension of the transmitted semantic features. Experiments using the CIFAR-10 dataset for image classification are employed to evaluate the proposed digital semantic communication network, and ablation studies are conducted to assess the proposed modules including the quantization module, structured pruning and SLL

    Machine Learning for Microcontroller-Class Hardware -- A Review

    Full text link
    The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.Comment: Accepted for publication at IEEE Sensors Journa
    • …
    corecore