11,724 research outputs found

    Cooperative prediction for cognitive radio networks

    Get PDF
    Combining spectrum sensing (SS) and primary user (PU) traffic forecasting provides a cognitive radio network with a platform from which informed and proactive operational decisions can be made. The success of these decisions is largely dependent on prediction accuracy. Allowing secondary users (SU) to perform these predictions in a collaborative manner allows for an improvement in the accuracy of this process, since individual SUs may suffer from SS and prediction inaccuracies due to poor channel conditions. To overcome these problems a collaborative approach to forecasting PU traffic behaviour, that combines SS and forecasting through SU cooperation, has been proposed in this article. Both pre-fusion and post-fusion scenarios for cooperative prediction were investigated and a number of binary prediction methods were considered (including the authors’ own simple technique). Cooperative prediction performance was investigated, under various PU traffic conditions, for a group of ten SUs experiencing different channel conditions and a sub-optimal cooperative forecasting algorithm was proposed to minimise cooperative prediction error. Simulation results indicated that the accuracy of the prediction methods was influenced by the PU traffic pattern and that cooperative prediction lead to a significant improvement in prediction accuracy under most of the traffic conditions considered. However, this came at the cost of increased computational complexity. The pre-fusion scenario was found to be the most accurate scenario (up to 25 % improvement), but was also eleven times more complex than when no fusion was employed. The cooperative forecasting algorithm was found to further improve these results.Sentech Chair in Broadband Wireless Multimedia Communication (BWMC), the National Research Foundation (NRF) and the Independent Communications Authority of South Africa (ICASA).http://link.springer.com/journal/112772017-08-30hb2016Electrical, Electronic and Computer Engineerin

    Optimization for Prediction-Driven Cooperative Spectrum Sensing in Cognitive Radio Networks

    Get PDF
    Empirical studies have observed that the spectrum usage in practice follows regular patterns. Machine learning (ML)-based spectrum prediction techniques can thus be used jointly with cooperative sensing in cognitive radio networks (CRNs). In this paper, we propose a novel cluster-based sensing-after-prediction scheme and aim to reduce the total energy consumption of a CRN. An integer programming problem is formulated that minimizes the cluster size and optimizes the decision threshold, while guaranteeing the system accuracy requirement. To solve this challenging optimization problem, the relaxation technique is used which transforms the optimization problem into a tractable problem. The solution to the relaxed problem serves as a foundation for the solution to the original integer programming. Finally, a low-complexity search algorithm is proposed which achieves the global optimum, as it obtains the same performance with exhaustive search. Simulation results demonstrate that the total energy consumption of CRN is greatly reduced by applying our clustered sensing-after-prediction scheme

    Cooperative Spectrum Sensing Using Random Matrix Theory

    Full text link
    In this paper, using tools from asymptotic random matrix theory, a new cooperative scheme for frequency band sensing is introduced for both AWGN and fading channels. Unlike previous works in the field, the new scheme does not require the knowledge of the noise statistics or its variance and is related to the behavior of the largest and smallest eigenvalue of random matrices. Remarkably, simulations show that the asymptotic claims hold even for a small number of observations (which makes it convenient for time-varying topologies), outperforming classical energy detection techniques.Comment: Submitted to International Symposium on Wireless Pervasive Computing 200
    • …
    corecore