110 research outputs found

    Resource-aware scheduling for 2D/3D multi-/many-core processor-memory systems

    Get PDF
    This dissertation addresses the complexities of 2D/3D multi-/many-core processor-memory systems, focusing on two key areas: enhancing timing predictability in real-time multi-core processors and optimizing performance within thermal constraints. The integration of an increasing number of transistors into compact chip designs, while boosting computational capacity, presents challenges in resource contention and thermal management. The first part of the thesis improves timing predictability. We enhance shared cache interference analysis for set-associative caches, advancing the calculation of Worst-Case Execution Time (WCET). This development enables accurate assessment of cache interference and the effectiveness of partitioned schedulers in real-world scenarios. We introduce TCPS, a novel task and cache-aware partitioned scheduler that optimizes cache partitioning based on task-specific WCET sensitivity, leading to improved schedulability and predictability. Our research explores various cache and scheduling configurations, providing insights into their performance trade-offs. The second part focuses on thermal management in 2D/3D many-core systems. Recognizing the limitations of Dynamic Voltage and Frequency Scaling (DVFS) in S-NUCA many-core processors, we propose synchronous thread migrations as a thermal management strategy. This approach culminates in the HotPotato scheduler, which balances performance and thermal safety. We also introduce 3D-TTP, a transient temperature-aware power budgeting strategy for 3D-stacked systems, reducing the need for Dynamic Thermal Management (DTM) activation. Finally, we present 3QUTM, a novel method for 3D-stacked systems that combines core DVFS and memory bank Low Power Modes with a learning algorithm, optimizing response times within thermal limits. This research contributes significantly to enhancing performance and thermal management in advanced processor-memory systems

    Machine Learning for Resource-Constrained Computing Systems

    Get PDF
    Die verfügbaren Ressourcen in Informationsverarbeitungssystemen wie Prozessoren sind in der Regel eingeschränkt. Das umfasst z. B. die elektrische Leistungsaufnahme, den Energieverbrauch, die Wärmeabgabe oder die Chipfläche. Daher ist die Optimierung der Verwaltung der verfügbaren Ressourcen von größter Bedeutung, um Ziele wie maximale Performanz zu erreichen. Insbesondere die Ressourcenverwaltung auf der Systemebene hat über die (dynamische) Zuweisung von Anwendungen zu Prozessorkernen und über die Skalierung der Spannung und Frequenz (dynamic voltage and frequency scaling, DVFS) einen großen Einfluss auf die Performanz, die elektrische Leistung und die Temperatur während der Ausführung von Anwendungen. Die wichtigsten Herausforderungen bei der Ressourcenverwaltung sind die hohe Komplexität von Anwendungen und Plattformen, unvorhergesehene (zur Entwurfszeit nicht bekannte) Anwendungen oder Plattformkonfigurationen, proaktive Optimierung und die Minimierung des Laufzeit-Overheads. Bestehende Techniken, die auf einfachen Heuristiken oder analytischen Modellen basieren, gehen diese Herausforderungen nur unzureichend an. Aus diesem Grund ist der Hauptbeitrag dieser Dissertation der Einsatz maschinellen Lernens (ML) für Ressourcenverwaltung. ML-basierte Lösungen ermöglichen die Bewältigung dieser Herausforderungen durch die Vorhersage der Auswirkungen potenzieller Entscheidungen in der Ressourcenverwaltung, durch Schätzung verborgener (unbeobachtbarer) Eigenschaften von Anwendungen oder durch direktes Lernen einer Ressourcenverwaltungs-Strategie. Diese Dissertation entwickelt mehrere neuartige ML-basierte Ressourcenverwaltung-Techniken für verschiedene Plattformen, Ziele und Randbedingungen. Zunächst wird eine auf Vorhersagen basierende Technik zur Maximierung der Performanz von Mehrkernprozessoren mit verteiltem Last-Level Cache und limitierter Maximaltemperatur vorgestellt. Diese verwendet ein neuronales Netzwerk (NN) zur Vorhersage der Auswirkungen potenzieller Migrationen von Anwendungen zwischen Prozessorkernen auf die Performanz. Diese Vorhersagen erlauben die Bestimmung der bestmöglichen Migration und ermöglichen eine proaktive Verwaltung. Das NN ist so trainiert, dass es mit unbekannten Anwendungen und verschiedenen Temperaturlimits zurechtkommt. Zweitens wird ein Boosting-Verfahren zur Maximierung der Performanz homogener Mehrkernprozessoren mit limitierter Maximaltemperatur mithilfe von DVFS vorgestellt. Dieses basiert auf einer neuartigen {Boostability}-Metrik, die die Abhängigkeiten von Performanz, elektrischer Leistung und Temperatur auf Spannungs/Frequenz-Änderungen in einer Metrik vereint. % ignorerepeated Die Abhängigkeiten von Performanz und elektrischer Leistung hängen von der Anwendung ab und können zur Laufzeit nicht direkt beobachtet (gemessen) werden. Daher wird ein NN verwendet, um diese Werte für unbekannte Anwendungen zu schätzen und so die Komplexität der Boosting-Optimierung zu bewältigen. Drittens wird eine Technik zur Temperaturminimierung von heterogenen Mehrkernprozessoren mit Quality of Service-Zielen vorgestellt. Diese verwendet Imitationslernen, um eine Migrationsstrategie von Anwendungen aus optimalen Orakel-Demonstrationen zu lernen. Dafür wird ein NN eingesetzt, um die Komplexität der Plattform und des Anwendungsverhaltens zu bewältigen. Die Inferenz des NNs wird mit Hilfe eines vorhandenen generischen Beschleunigers, einer Neural Processing Unit (NPU), beschleunigt. Auch die ML Algorithmen selbst müssen auch mit begrenzten Ressourcen ausgeführt werden. Zuletzt wird eine Technik für ressourcenorientiertes Training auf verteilten Geräten vorgestellt, um einen konstanten Trainingsdurchsatz bei sich schnell ändernder Verfügbarkeit von Rechenressourcen aufrechtzuerhalten, wie es z.~B.~aufgrund von Konflikten bei gemeinsam genutzten Ressourcen der Fall ist. Diese Technik verwendet Structured Dropout, welches beim Training zufällige Teile des NNs auslässt. Dadurch können die erforderlichen Ressourcen für das Training dynamisch angepasst werden -- mit vernachlässigbarem Overhead, aber auf Kosten einer langsameren Trainingskonvergenz. Die Pareto-optimalen Dropout-Parameter pro Schicht des NNs werden durch eine Design Space Exploration bestimmt. Evaluierungen dieser Techniken werden sowohl in Simulationen als auch auf realer Hardware durchgeführt und zeigen signifikante Verbesserungen gegenüber dem Stand der Technik, bei vernachlässigbarem Laufzeit-Overhead. Zusammenfassend zeigt diese Dissertation, dass ML eine Schlüsseltechnologie zur Optimierung der Verwaltung der limitierten Ressourcen auf Systemebene ist, indem die damit verbundenen Herausforderungen angegangen werden

    Coordinated management of DVFS and cache partitioning under QoS constraints to save energy in multi-core systems

    Get PDF
    Reducing the energy expended to carry out a computational task is important. In this work, we explore the prospects of meeting Quality-of-Service requirements of tasks on a multi-core system while adjusting resources to expend a minimum of energy. This paper considers, for the first time, a QoS-driven coordinated resource management algorithm (RMA) that dynamically adjusts the size of the per-core last-level cache partitions and the per-core voltage–frequency settings to save energy while respecting QoS requirements of every application in multi-programmed workloads run on multi-core systems. It does so by doing configuration-space exploration across the spectrum of LLC partition sizes and Dynamic Voltage–Frequency Scaling (DVFS) settings at runtime at negligible overhead. We show that the energy of 4-core and 8-core systems can be reduced by up to 18% and 14%, respectively, compared to a baseline with even distribution of cache resources and a fixed mid-range core voltage–frequency setting. The energy savings can potentially reach 29% if the QoS targets are relaxed to 40% longer execution time

    Dynamic Management of Multi-Core Processor Resources to Improve Energy Efficiency under Quality-of-Service Constraints

    Get PDF
    With the current technology trends, the number of computers and computation demand is increasing dramatically. In addition to different economic and environmental costs at a large scale, the operational time of battery-powered devices is dependent on how efficiently the computer processors consume energy. Computer processors generally consist of several processing cores and a hierarchy of cache memory that includes both private and shared cache capacity among the cores. A resource management algorithm can adjust the configuration of different core and cache resources at regular intervals during run-time, according to the dynamic characteristics of the workload. A typical resource management policy is to maximize performance, in terms of processing speed or throughput, without exceeding the power and thermal limits. However, this can lead to excessive energy expenditure since a higher performance does not necessarily increase the value of the outcome. For example, increasing the frame-rate of multi-media applications beyond a certain target will not improve user experience considerably. Therefore, applications should be associated with Quality-of-Service (QoS) targets. This way, the resource manager can search for configurations with minimum energy that does not violate the performance constraints of any application. To achieve this goal, we propose several resource management schemes as well as hardware and software techniques for performance and energy modeling, in three papers that constitute this thesis. In the first paper, we demonstrate that, in many cases, independent management of resources such as per-core dynamic voltage-frequency scaling (DVFS) and cache partitioning fails to save a considerable energy without causing any performance degradation. Therefore, we present a coordinated resource management algorithm that saves considerable energy by exploring different combinations of resource allocations to all applications, at regular intervals during run-time. This scheme is based on simplified analytical performance and energy models and a multi-level reduction technique for reducing the dimensions of the multi-core configuration space. In the second paper, we extend the coordinated resource management with dynamic adaptation of the core micro-architectural resources. This way, we include instruction- and memory-level parallelism, ILP and MLP, resp., in the resource trade-offs together with per-core DVFS and cache partitioning. This provides a powerful means to further improve energy savings. Additionally, to enable this scheme, we propose a hardware technique that improves the accuracy of performance and energy prediction for different core sizes and cache partitionings. Finally, in the third paper, we demonstrate that substantial improvements in energy savings are possible by allowing short-term deviations from the baseline performance target. We measure these deviations by introducing a parameter called slack. Based on this, we present Cooperative Slack Management (CSM) that finds opportunities to generate slack at low energy cost and utilize it later to save more energy in the same or even other processor cores. This way, we also ensure that the performance consistently remains ahead of the baseline target in every core

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    ADAPTIVE POWER MANAGEMENT FOR COMPUTERS AND MOBILE DEVICES

    Get PDF
    Power consumption has become a major concern in the design of computing systems today. High power consumption increases cooling cost, degrades the system reliability and also reduces the battery life in portable devices. Modern computing/communication devices support multiple power modes which enable power and performance tradeoff. Dynamic power management (DPM), dynamic voltage and frequency scaling (DVFS), and dynamic task migration for workload consolidation are system level power reduction techniques widely used during runtime. In the first part of the dissertation, we concentrate on the dynamic power management of the personal computer and server platform where the DPM, DVFS and task migrations techniques are proved to be highly effective. A hierarchical energy management framework is assumed, where task migration is applied at the upper level to improve server utilization and energy efficiency, and DPM/DVFS is applied at the lower level to manage the power mode of individual processor. This work focuses on estimating the performance impact of workload consolidation and searching for optimal DPM/DVFS that adapts to the changing workload. Machine learning based modeling and reinforcement learning based policy optimization techniques are investigated. Mobile computing has been weaved into everyday lives to a great extend in recent years. Compared to traditional personal computer and server environment, the mobile computing environment is obviously more context-rich and the usage of mobile computing device is clearly imprinted with user\u27s personal signature. The ability to learn such signature enables immense potential in workload prediction and energy or battery life management. In the second part of the dissertation, we present two mobile device power management techniques which take advantage of the context-rich characteristics of mobile platform and make adaptive energy management decisions based on different user behavior. We firstly investigate the user battery usage behavior modeling and apply the model directly for battery energy management. The first technique aims at maximizing the quality of service (QoS) while keeping the risk of battery depletion below a given threshold. The second technique is an user-aware streaming strategies for energy efficient smartphone video playback applications (e.g. YouTube) that minimizes the sleep and wake penalty of cellular module and at the same time avoid the energy waste from excessive downloading. Runtime power and thermal management has attracted substantial interests in multi-core distributed embedded systems. Fast performance evaluation is an essential step in the research of distributed power and thermal management. In last part of the dissertation, we present an FPGA based emulator of multi-core distributed embedded system designed to support the research in runtime power/thermal management. Hardware and software supports are provided to carry out basic power/thermal management actions including inter-core or inter-FPGA communications, runtime temperature monitoring and dynamic frequency scaling

    Intelligent systems for efficiency and security

    Get PDF
    As computing becomes ubiquitous and personalized, resources like energy, storage and time are becoming increasingly scarce and, at the same time, computing systems must deliver in multiple dimensions, such as high performance, quality of service, reliability, security and low power. Building such computers is hard, particularly when the operating environment is becoming more dynamic, and systems are becoming heterogeneous and distributed. Unfortunately, computers today manage resources with many ad hoc heuristics that are suboptimal, unsafe, and cannot be composed across the computer’s subsystems. Continuing this approach has severe consequences: underperforming systems, resource waste, information loss, and even life endangerment. This dissertation research develops computing systems which, through intelligent adaptation, deliver efficiency along multiple dimensions. The key idea is to manage computers with principled methods from formal control. It is with these methods that the multiple subsystems of a computer sense their environment and configure themselves to meet system-wide goals. To achieve the goal of intelligent systems, this dissertation makes a series of contributions, each building on the previous. First, it introduces the use of formal MIMO (Multiple Input Multiple Output) control for processors, to simultaneously optimize many goals like performance, power, and temperature. Second, it develops the Yukta control system, which uses coordinated formal controllers in different layers of the stack (hardware and operating system). Third, it uses robust control to develop a fast, globally coordinated and decentralized control framework called Tangram, for heterogeneous computers. Finally, it presents Maya, a defense against power side-channel attacks that uses formal control to reshape the power dissipated by a computer, confusing the attacker. The ideas in the dissertation have been demonstrated successfully with several prototypes, including one built along with AMD (Advanced Micro Devices, Inc.) engineers. These designs significantly outperformed the state of the art. The research in this dissertation brought formal control closer to computer architecture and has been well-received in both domains. It has the first application of full-fledged MIMO control for processors, the first use of robust control in computer systems, and the first application of formal control for side-channel defense. It makes a significant stride towards intelligent systems that are efficient, secure and reliable
    • …
    corecore