17,197 research outputs found

    Deep Multi-User Reinforcement Learning for Distributed Dynamic Spectrum Access

    Full text link
    We consider the problem of dynamic spectrum access for network utility maximization in multichannel wireless networks. The shared bandwidth is divided into K orthogonal channels. In the beginning of each time slot, each user selects a channel and transmits a packet with a certain transmission probability. After each time slot, each user that has transmitted a packet receives a local observation indicating whether its packet was successfully delivered or not (i.e., ACK signal). The objective is a multi-user strategy for accessing the spectrum that maximizes a certain network utility in a distributed manner without online coordination or message exchanges between users. Obtaining an optimal solution for the spectrum access problem is computationally expensive in general due to the large state space and partial observability of the states. To tackle this problem, we develop a novel distributed dynamic spectrum access algorithm based on deep multi-user reinforcement leaning. Specifically, at each time slot, each user maps its current state to spectrum access actions based on a trained deep-Q network used to maximize the objective function. Game theoretic analysis of the system dynamics is developed for establishing design principles for the implementation of the algorithm. Experimental results demonstrate strong performance of the algorithm.Comment: This work has been accepted for publication in the IEEE Transactions on Wireless Communication

    Distributed Cooperative Spectrum Sharing in UAV Networks Using Multi-Agent Reinforcement Learning

    Full text link
    In this paper, we develop a distributed mechanism for spectrum sharing among a network of unmanned aerial vehicles (UAV) and licensed terrestrial networks. This method can provide a practical solution for situations where the UAV network may need external spectrum when dealing with congested spectrum or need to change its operating frequency due to security threats. Here we study a scenario where the UAV network performs a remote sensing mission. In this model, the UAVs are categorized into two clusters of relaying and sensing UAVs. The relay UAVs provide a relaying service for a licensed network to obtain spectrum access for the rest of UAVs that perform the sensing task. We develop a distributed mechanism in which the UAVs locally decide whether they need to participate in relaying or sensing considering the fact that communications among UAVs may not be feasible or reliable. The UAVs learn the optimal task allocation using a distributed reinforcement learning algorithm. Convergence of the algorithm is discussed and simulation results are presented for different scenarios to verify the convergence.Comment: 16 Pages, 8 Figure

    Dynamic Spectrum Access in Time-varying Environment: Distributed Learning Beyond Expectation Optimization

    Full text link
    This article investigates the problem of dynamic spectrum access for canonical wireless networks, in which the channel states are time-varying. In the most existing work, the commonly used optimization objective is to maximize the expectation of a certain metric (e.g., throughput or achievable rate). However, it is realized that expectation alone is not enough since some applications are sensitive to fluctuations. Effective capacity is a promising metric for time-varying service process since it characterizes the packet delay violating probability (regarded as an important statistical QoS index), by taking into account not only the expectation but also other high-order statistic. Therefore, we formulate the interactions among the users in the time-varying environment as a non-cooperative game, in which the utility function is defined as the achieved effective capacity. We prove that it is an ordinal potential game which has at least one pure strategy Nash equilibrium. Based on an approximated utility function, we propose a multi-agent learning algorithm which is proved to achieve stable solutions with dynamic and incomplete information constraints. The convergence of the proposed learning algorithm is verified by simulation results. Also, it is shown that the proposed multi-agent learning algorithm achieves satisfactory performance.Comment: 13 pages, 10 figures, accepted for publication in IEEE Transactions on Communication

    A Solution for Dynamic Spectrum Management in Mission-Critical UAV Networks

    Full text link
    In this paper, we study the problem of spectrum scarcity in a network of unmanned aerial vehicles (UAVs) during mission-critical applications such as disaster monitoring and public safety missions, where the pre-allocated spectrum is not sufficient to offer a high data transmission rate for real-time video-streaming. In such scenarios, the UAV network can lease part of the spectrum of a terrestrial licensed network in exchange for providing relaying service. In order to optimize the performance of the UAV network and prolong its lifetime, some of the UAVs will function as a relay for the primary network while the rest of the UAVs carry out their sensing tasks. Here, we propose a team reinforcement learning algorithm performed by the UAV's controller unit to determine the optimum allocation of sensing and relaying tasks among the UAVs as well as their relocation strategy at each time. We analyze the convergence of our algorithm and present simulation results to evaluate the system throughput in different scenarios.Comment: 10 Pages, 5 Figures, 2 Table

    From 4G to 5G: Self-organized Network Management meets Machine Learning

    Full text link
    In this paper, we provide an analysis of self-organized network management, with an end-to-end perspective of the network. Self-organization as applied to cellular networks is usually referred to Self-organizing Networks (SONs), and it is a key driver for improving Operations, Administration, and Maintenance (OAM) activities. SON aims at reducing the cost of installation and management of 4G and future 5G networks, by simplifying operational tasks through the capability to configure, optimize and heal itself. To satisfy 5G network management requirements, this autonomous management vision has to be extended to the end to end network. In literature and also in some instances of products available in the market, Machine Learning (ML) has been identified as the key tool to implement autonomous adaptability and take advantage of experience when making decisions. In this paper, we survey how network management can significantly benefit from ML solutions. We review and provide the basic concepts and taxonomy for SON, network management and ML. We analyse the available state of the art in the literature, standardization, and in the market. We pay special attention to 3rd Generation Partnership Project (3GPP) evolution in the area of network management and to the data that can be extracted from 3GPP networks, in order to gain knowledge and experience in how the network is working, and improve network performance in a proactive way. Finally, we go through the main challenges associated with this line of research, in both 4G and in what 5G is getting designed, while identifying new directions for research.Comment: 23 pages, 3 figures, Surve

    Power Allocation for Cognitive Wireless Mesh Networks by Applying Multi-agent Q-learning Approach

    Full text link
    As the scarce spectrum resource is becoming over-crowded, cognitive radios (CRs) indicate great flexibility to improve the spectrum efficiency by opportunistically accessing the authorized frequency bands. One of the critical challenges for operating such radios in a network is how to efficiently allocate transmission powers and frequency resource among the secondary users (SUs) while satisfying the quality-of-service (QoS) constraints of the primary users (PUs). In this paper, we focus on the non-cooperative power allocation problem in cognitive wireless mesh networks (CogMesh) formed by a number of clusters with the consideration of energy efficiency. Due to the SUs' selfish and spontaneous properties, the problem is modeled as a stochastic learning process. We first extend the single-agent Q-learning to a multi-user context, and then propose a conjecture based multi-agent Qlearning algorithm to achieve the optimal transmission strategies with only private and incomplete information. An intelligent SU performs Q-function updates based on the conjecture over the other SUs' stochastic behaviors. This learning algorithm provably converges given certain restrictions that arise during learning procedure. Simulation experiments are used to verify the performance of our algorithm and demonstrate its effectiveness of improving the energy efficiency

    The Price of Governance: A Middle Ground Solution to Coordination in Organizational Control

    Full text link
    Achieving coordination is crucial in organizational control. This paper investigates a middle ground solution between decentralized interactions and centralized administrations for coordinating agents beyond inefficient behavior. We first propose the price of governance (PoG) to evaluate how such a middle ground solution performs in terms of effectiveness and cost. We then propose a hierarchical supervision framework to explicitly model the PoG, and define step by step how to realize the core principle of the framework and compute the optimal PoG for a control problem. Two illustrative case studies are carried out to exemplify the applications of the proposed framework and its methodology. Results show that by properly formulating and implementing each step, the hierarchical supervision framework is capable of promoting coordination among agents while bounding administrative cost to a minimum in different kinds of organizational control problems

    A Collaborative Multi-agent Reinforcement Learning Anti-jamming Algorithm in Wireless Networks

    Full text link
    In this letter, we investigate the anti-jamming defense problem in multi-user scenarios, where the coordination among users is taken into consideration. The Markov game framework is employed to model and analyze the anti-jamming defense problem, and a collaborative multi-agent anti-jamming algorithm (CMAA) is proposed to obtain the optimal anti-jamming strategy. In sweep jamming scenarios, on the one hand, the proposed CMAA can tackle the external malicious jamming. On the other hand, it can effectively cope with the mutual interference among users. Simulation results show that the proposed CMAA is superior to both sensing based method and independent Q-learning method, and has the highest normalized rate.Comment: 4 pages, 6 figures, Submitted to IEEE Wireless Communications Letter

    Data Management in Industry 4.0: State of the Art and Open Challenges

    Full text link
    Information and communication technologies are permeating all aspects of industrial and manufacturing systems, expediting the generation of large volumes of industrial data. This article surveys the recent literature on data management as it applies to networked industrial environments and identifies several open research challenges for the future. As a first step, we extract important data properties (volume, variety, traffic, criticality) and identify the corresponding data enabling technologies of diverse fundamental industrial use cases, based on practical applications. Secondly, we provide a detailed outline of recent industrial architectural designs with respect to their data management philosophy (data presence, data coordination, data computation) and the extent of their distributiveness. Then, we conduct a holistic survey of the recent literature from which we derive a taxonomy of the latest advances on industrial data enabling technologies and data centric services, spanning all the way from the field level deep in the physical deployments, up to the cloud and applications level. Finally, motivated by the rich conclusions of this critical analysis, we identify interesting open challenges for future research. The concepts presented in this article thematically cover the largest part of the industrial automation pyramid layers. Our approach is multidisciplinary, as the selected publications were drawn from two fields; the communications, networking and computation field as well as the industrial, manufacturing and automation field. The article can help the readers to deeply understand how data management is currently applied in networked industrial environments, and select interesting open research opportunities to pursue

    Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues

    Full text link
    As a key technique for enabling artificial intelligence, machine learning (ML) is capable of solving complex problems without explicit programming. Motivated by its successful applications to many practical tasks like image recognition, both industry and the research community have advocated the applications of ML in wireless communication. This paper comprehensively surveys the recent advances of the applications of ML in wireless communication, which are classified as: resource management in the MAC layer, networking and mobility management in the network layer, and localization in the application layer. The applications in resource management further include power control, spectrum management, backhaul management, cache management, beamformer design and computation resource management, while ML based networking focuses on the applications in clustering, base station switching control, user association and routing. Moreover, literatures in each aspect is organized according to the adopted ML techniques. In addition, several conditions for applying ML to wireless communication are identified to help readers decide whether to use ML and which kind of ML techniques to use, and traditional approaches are also summarized together with their performance comparison with ML based approaches, based on which the motivations of surveyed literatures to adopt ML are clarified. Given the extensiveness of the research area, challenges and unresolved issues are presented to facilitate future studies, where ML based network slicing, infrastructure update to support ML based paradigms, open data sets and platforms for researchers, theoretical guidance for ML implementation and so on are discussed.Comment: 34 pages,8 figure
    • …
    corecore