28,393 research outputs found

    Robust Sensor Fusion for Indoor Wireless Localization

    Full text link
    Location knowledge in indoor environment using Indoor Positioning Systems (IPS) has become very useful and popular in recent years. Indoor wireless localization suffers from severe multi-path fading and non-line-of-sight conditions. This paper presents a novel indoor localization framework based on sensor fusion of Zigbee Wireless Sensor Networks (WSN) using Received Signal Strength (RSS). The unknown position is equipped with two or more mobile nodes. The range between two mobile nodes is fixed as priori. The attitude (roll, pitch, and yaw) of the mobile node are measured by inertial sensors (ISs). Then the angle and the range between any two nodes can be obtained, and thus the path between the two nodes can be modeled as a curve. Through an efficient cooperation between two or more mobile nodes, this framework effectively exploits the RSS techniques. This constraint help improve the positioning accuracy. Theoretical analysis on localization distortion and Monte Carlo simulations shows that the proposed cooperative strategy of multiple nodes with extended Kalman filter (EKF) achieves significantly higher positioning accuracy than the existing systems, especially in heavily obstructed scenarios

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Positioning Accuracy Improvement via Distributed Location Estimate in Cooperative Vehicular Networks

    Full text link
    The development of cooperative vehicle safety (CVS) applications, such as collision warnings, turning assistants, and speed advisories, etc., has received great attention in the past few years. Accurate vehicular localization is essential to enable these applications. In this study, motivated by the proliferation of the Global Positioning System (GPS) devices, and the increasing sophistication of wireless communication technologies in vehicular networks, we propose a distributed location estimate algorithm to improve the positioning accuracy via cooperative inter-vehicle distance measurement. In particular, we compute the inter-vehicle distance based on raw GPS pseudorange measurements, instead of depending on traditional radio-based ranging techniques, which usually either suffer from high hardware cost or have inadequate positioning accuracy. In addition, we improve the estimation of the vehicles' locations only based on the inaccurate GPS fixes, without using any anchors with known exact locations. The algorithm is decentralized, which enhances its practicability in highly dynamic vehicular networks. We have developed a simulation model to evaluate the performance of the proposed algorithm, and the results demonstrate that the algorithm can significantly improve the positioning accuracy.Comment: To appear in Proc. of the 15th International IEEE Conference on Intelligent Transportation Systems (IEEE ITSC'12

    Modified Iterated Extended Kalman Filter for Mobile Cooperative Tracking System

    Get PDF
    Tracking a mobile node using wireless sensor network (WSN) under cooperative system among anchor node and mobile node, has been discussed in this work, interested to the indoor positioning applications. Developing an indoor location tracking system based on received signal strength indicator (RSSI) of WSN is considered cost effective and the simplest method. The suitable technique for estimating position out of RSSI measurements is the extended Kalman filter (EKF) which is especially used for non linear data as RSSI. In order to reduce the estimated errors from EKF algorithm, this work adopted forward data processing of the EKF algorithm to improve the accuracy of the filtering output, its called iterated extended Kalman filter (IEKF). However, using IEKF algorithm should know the stopping criterion value that is influenced to the maximum number iterations of this system. The number of iterations performed will be affected to the computation time although it can improve the estimation position. In this paper, we propose modified IEKF for mobile cooperative tracking system within only 4 iterations number. The ilustrated results using RSSI measurements and simulation in MATLAB show that our propose method have capability to reduce error estimation percentage up to 19.3% , with MSE (mean square error) 0.88 m compared with conventional IEKF algorithm with MSE 1.09 m. The time computation perfomance of our propose method achived in 3.55 seconds which is better than adding more iteration process.     

    Cooperative Relative Positioning of Mobile Users by Fusing IMU Inertial and UWB Ranging Information

    Full text link
    Relative positioning between multiple mobile users is essential for many applications, such as search and rescue in disaster areas or human social interaction. Inertial-measurement unit (IMU) is promising to determine the change of position over short periods of time, but it is very sensitive to error accumulation over long term run. By equipping the mobile users with ranging unit, e.g. ultra-wideband (UWB), it is possible to achieve accurate relative positioning by trilateration-based approaches. As compared to vision or laser-based sensors, the UWB does not need to be with in line-of-sight and provides accurate distance estimation. However, UWB does not provide any bearing information and the communication range is limited, thus UWB alone cannot determine the user location without any ambiguity. In this paper, we propose an approach to combine IMU inertial and UWB ranging measurement for relative positioning between multiple mobile users without the knowledge of the infrastructure. We incorporate the UWB and the IMU measurement into a probabilistic-based framework, which allows to cooperatively position a group of mobile users and recover from positioning failures. We have conducted extensive experiments to demonstrate the benefits of incorporating IMU inertial and UWB ranging measurements.Comment: accepted by ICRA 201

    Implicit Cooperative Positioning in Vehicular Networks

    Get PDF
    Absolute positioning of vehicles is based on Global Navigation Satellite Systems (GNSS) combined with on-board sensors and high-resolution maps. In Cooperative Intelligent Transportation Systems (C-ITS), the positioning performance can be augmented by means of vehicular networks that enable vehicles to share location-related information. This paper presents an Implicit Cooperative Positioning (ICP) algorithm that exploits the Vehicle-to-Vehicle (V2V) connectivity in an innovative manner, avoiding the use of explicit V2V measurements such as ranging. In the ICP approach, vehicles jointly localize non-cooperative physical features (such as people, traffic lights or inactive cars) in the surrounding areas, and use them as common noisy reference points to refine their location estimates. Information on sensed features are fused through V2V links by a consensus procedure, nested within a message passing algorithm, to enhance the vehicle localization accuracy. As positioning does not rely on explicit ranging information between vehicles, the proposed ICP method is amenable to implementation with off-the-shelf vehicular communication hardware. The localization algorithm is validated in different traffic scenarios, including a crossroad area with heterogeneous conditions in terms of feature density and V2V connectivity, as well as a real urban area by using Simulation of Urban MObility (SUMO) for traffic data generation. Performance results show that the proposed ICP method can significantly improve the vehicle location accuracy compared to the stand-alone GNSS, especially in harsh environments, such as in urban canyons, where the GNSS signal is highly degraded or denied.Comment: 15 pages, 10 figures, in review, 201
    corecore