3,152 research outputs found

    Cooperative localization for autonomous underwater vehicles

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2009Self-localization of an underwater vehicle is particularly challenging due to the absence of Global Positioning System (GPS) reception or features at known positions that could otherwise have been used for position computation. Thus Autonomous Underwater Vehicle (AUV) applications typically require the pre-deployment of a set of beacons. This thesis examines the scenario in which the members of a group of AUVs exchange navigation information with one another so as to improve their individual position estimates. We describe how the underwater environment poses unique challenges to vehicle navigation not encountered in other environments in which robots operate and how cooperation can improve the performance of self-localization. As intra-vehicle communication is crucial to cooperation, we also address the constraints of the communication channel and the effect that these constraints have on the design of cooperation strategies. The classical approaches to underwater self-localization of a single vehicle, as well as more recently developed techniques are presented. We then examine how methods used for cooperating land-vehicles can be transferred to the underwater domain. An algorithm for distributed self-localization, which is designed to take the specific characteristics of the environment into account, is proposed. We also address how correlated position estimates of cooperating vehicles can lead to overconfidence in individual position estimates. Finally, key to any successful cooperative navigation strategy is the incorporation of the relative positioning between vehicles. The performance of localization algorithms with different geometries is analyzed and a distributed algorithm for the dynamic positioning of vehicles, which serve as dedicated navigation beacons for a fleet of AUVs, is proposed.This work was funded by Office of Naval Research grants N00014-97-1-0202, N00014-05-1-0255, N00014-02-C-0210, N00014-07-1-1102 and the ASAP MURI program led by Naomi Leonard of Princeton University

    Cooperative Localization for Autonomous Underwater Vehicles

    Get PDF
    The absence of GPS underwater makes navigation for Autonomous Underwater Vehicles (AUVs) a difficult challenge. Without an external reference in the form of acoustic beacons at known positions, the vehicle has to rely on proprioceptive information obtained through a compass, a Doppler Velocity Logger (DVL) or an Inertial Navigation System (INS). Independent of the quality of the sensors used, the error in the position estimate based on dead-reckoning information grows without bound. Typical navigation errors are 0.5% to 2% of distance traveled for vehicles traveling within a few hundred meters of the sea floor such that their DVL has a lock on the bottom. Errors as low as 0.1% can be obtained with large and expensive INS systems, but for vehicles relying only on a compass and a speed estimate can be as high as 10%. By surfacing the AUV can obtain a position update through its GPS, but this is impossible (under ice) or undesirable for many applications. The use of static beacons in the form of a Long Baseline (LBL) array limits the operation area to a few km2 and requires a substantial deployment effort before operations, especially in deep water. As underwater vehicles become more reliable and affordable the simultaneous use of several AUVs recently became a viable option and multi-vehicle deployments will become standard in the upcoming years. This will not only make entirely new types of missions which rely on cooperation possible, but will also allow each individual member of the group to benefit from navigation information obtained from other members. For optimal cooperative localization a few dedicated Communication and Navigation Aid-AUVs (CNAs), which maintain an accurate estimate of their position through sophisticated DVL and INS sensors, can enable a much larger group of vehicles with less sophisticated navigation suites to maintain an accurate position

    Optimization of Potential Field Method Parameters through networks for Swarm Cooperative Manipulation Tasks

    Get PDF
    An interesting current research field related to autonomous robots is mobile manipulation performed by cooperating robots (in terrestrial, aerial and underwater environments). Focusing on the underwater scenario, cooperative manipulation of Intervention-Autonomous Underwater Vehicles (I-AUVs) is a complex and difficult application compared with the terrestrial or aerial ones because of many technical issues, such as underwater localization and limited communication. A decentralized approach for cooperative mobile manipulation of I-AUVs based on Artificial Neural Networks (ANNs) is proposed in this article. This strategy exploits the potential field method; a multi-layer control structure is developed to manage the coordination of the swarm, the guidance and navigation of I-AUVs and the manipulation task. In the article, this new strategy has been implemented in the simulation environment, simulating the transportation of an object. This object is moved along a desired trajectory in an unknown environment and it is transported by four underwater mobile robots, each one provided with a seven-degrees-of-freedom robotic arm. The simulation results are optimized thanks to the ANNs used for the potentials tuning

    Experiments in Moving Baseline Navigation using Autonomous Surface Craft

    Get PDF
    This paper describes an on-going research effort to achieve real-time cooperative localization of multiple autonomous underwater vehicles. We describe a series of experiments that utilize autonomous surface craft (ASC), equiped with undersea acoustic modems, GPS, and 802.11b wireless ethernet communications, to acquire data and develop software for cooperative localization of distributed vehicle networks. Our experiments demonstrate the capability of the Woods Hole acoustic modems to provide accurate round-trip and one-way range measurements, as well as data transfer, for a fully mobile network of vehicles in formation flight. Finally, we present preliminary results from initial experiments involving cooperative operation of an Odyssey III AUV and two ASCs, demonstrating ranging and data transfer from the ASCs to the Odyssey III

    Optimal path shape for range-only underwater target localization using a Wave Glider

    Get PDF
    Underwater localization using acoustic signals is one of the main components in a navigation system for an autonomous underwater vehicle (AUV) as a more accurate alternative to dead-reckoning techniques. Although different methods based on the idea of multiple beacons have been studied, other approaches use only one beacon, which reduces the system’s costs and deployment complexity. The inverse approach for single-beacon navigation is to use this method for target localization by an underwater or surface vehicle. In this paper, a method of range-only target localization using a Wave Glider is presented, for which simulations and sea tests have been conducted to determine optimal parameters to minimize acoustic energy use and search time, and to maximize location accuracy and precision. Finally, a field mission is presented, where a Benthic Rover (an autonomous seafloor vehicle) is localized and tracked using minimal human intervention. This mission shows, as an example, the power of using autonomous vehicles in collaboration for oceanographic research.Peer ReviewedPostprint (author's final draft

    Low cost underwater acoustic localization

    Full text link
    Over the course of the last decade, the cost of marine robotic platforms has significantly decreased. In part this has lowered the barriers to entry of exploring and monitoring larger areas of the earth's oceans. However, these advances have been mostly focused on autonomous surface vehicles (ASVs) or shallow water autonomous underwater vehicles (AUVs). One of the main drivers for high cost in the deep water domain is the challenge of localizing such vehicles using acoustics. A low cost one-way travel time underwater ranging system is proposed to assist in localizing deep water submersibles. The system consists of location aware anchor buoys at the surface and underwater nodes. This paper presents a comparison of methods together with details on the physical implementation to allow its integration into a deep sea micro AUV currently in development. Additional simulation results show error reductions by a factor of three.Comment: 73rd Meeting of the Acoustical Society of Americ

    Cooperative bathymetry-based localization using low-cost autonomous underwater vehicles

    Get PDF
    We present a cooperative bathymetry-based localization approach for a team of low-cost autonomous underwater vehicles (AUVs), each equipped only with a single-beam altimeter, a depth sensor and an acoustic modem. The localization of the individual AUV is achieved via fully decentralized particle filtering, with the local filter’s measurement model driven by the AUV’s altimeter measurements and ranging information obtained through inter-vehicle communication. We perform empirical analysis on the factors that affect the filter performance. Simulation studies using randomly generated trajectories as well as trajectories executed by the AUVs during field experiments successfully demonstrate the feasibility of the technique. The proposed cooperative localization technique has the potential to prolong AUV mission time, and thus open the door for long-term autonomy underwater.Massachusetts Institute of Technology. Department of Mechanical EngineeringSingapore-MIT Alliance for Research and Technology (SMART) (Graduate Fellowship
    • …
    corecore