485 research outputs found

    Cooperative Simultaneous Localization and Synchronization in Mobile Agent Networks

    Full text link
    Cooperative localization in agent networks based on interagent time-of-flight measurements is closely related to synchronization. To leverage this relation, we propose a Bayesian factor graph framework for cooperative simultaneous localization and synchronization (CoSLAS). This framework is suited to mobile agents and time-varying local clock parameters. Building on the CoSLAS factor graph, we develop a distributed (decentralized) belief propagation algorithm for CoSLAS in the practically important case of an affine clock model and asymmetric time stamping. Our algorithm allows for real-time operation and is suitable for a time-varying network connectivity. To achieve high accuracy at reduced complexity and communication cost, the algorithm combines particle implementations with parametric message representations and takes advantage of a conditional independence property. Simulation results demonstrate the good performance of the proposed algorithm in a challenging scenario with time-varying network connectivity.Comment: 13 pages, 6 figures, 3 tables; manuscript submitted to IEEE Transaction on Signal Processin

    TOA-based passive localization constructed over factor graphs: A unified framework

    Full text link
    © 2019 IEEE. Passive localization based on time of arrival (TOA) measurements is investigated, where the transmitted signal is reflected by a passive target and then received at several distributed receivers. After collecting all measurements at receivers, we can determine the target location. The aim of this paper is to provide a unified factor graph-based framework for passive localization in wireless sensor networks based on TOA measurements. Relying on the linearization of range measurements, we construct a Forney-style factor graph model and conceive the corresponding Gaussian message passing algorithm to obtain the target location. It is shown that the factor graph can be readily modified for handling challenging scenarios such as uncertain receiver positions and link failures. Moreover, a distributed localization method based on consensus-aided operation is proposed for a large-scale resource constrained network operating without a fusion center. Furthermore, we derive the Cramér-Rao bound (CRB) to evaluate the performance of the proposed algorithm. Our simulation results verify the efficiency of the proposed unified approach and of its distributed implementation

    Probabilistic Graphical Models: an Application in Synchronization and Localization

    Get PDF
    Die Lokalisierung von mobilen Nutzern (MU) in sehr dichten Netzen erfordert häufig die Synchronisierung der Access Points (APs) untereinander. Erstens konzentriert sich diese Arbeit auf die Lösung des Problems der Zeitsynchronisation in 5G-Netzwerken, indem ein hybrider Bayesischer Ansatz für die Schätzung des Taktversatzes und des Versatzes verwendet wird. Wir untersuchen und demonstrieren den beträchtlichen Nutzen der Belief Propagation (BP), die auf factor graphs läuft, um eine präzise netzwerkweite Synchronisation zu erreichen. Darüber hinaus nutzen wir die Vorteile der Bayesischen Rekursiven Filterung (BRF), um den Zeitstempel-Fehler bei der paarweisen Synchronisierung zu verringern. Schließlich zeigen wir die Vorzüge der hybriden Synchronisation auf, indem wir ein großes Netzwerk in gemeinsame und lokale Synchronisationsdomänen unterteilen und so den am besten geeigneten Synchronisationsalgorithmus (BP- oder BRF-basiert) auf jede Domäne anwenden können. Zweitens schlagen wir einen Deep Neural Network (DNN)-gestützten Particle Filter-basierten (DePF)-Ansatz vor, um das gemeinsame MU-Sync&loc-Problem zu lösen. Insbesondere setzt DePF einen asymmetrischen Zeitstempel-Austauschmechanismus zwischen den MUs und den APs ein, der Informationen über den Taktversatz, die Zeitverschiebung der MUs, und die AP-MU Abstand liefert. Zur Schätzung des Ankunftswinkels des empfangenen Synchronisierungspakets nutzt DePF den multiple signal classification Algorithmus, der durch die Channel Impulse Response (CIR) der Synchronisierungspakete gespeist wird. Die CIR wird auch genutzt, um den Verbindungszustand zu bestimmen, d. h. Line-of-Sight (LoS) oder Non-LoS (NLoS). Schließlich nutzt DePF particle Gaussian mixtures, die eine hybride partikelbasierte und parametrische BRF-Fusion der vorgenannten Informationen ermöglichen und die Position und die Taktparameter der MUs gemeinsam schätzen.Mobile User (MU) localization in ultra dense networks often requires, on one hand, the Access Points (APs) to be synchronized among each other, and, on the other hand, the MU-AP synchronization. In this work, we firstly address the former, which eventually provides a basis for the latter, i.e., for the joint MU synchronization and localization (sync&loc). In particular, firstly, this work focuses on tackling the time synchronization problem in 5G networks by adopting a hybrid Bayesian approach for clock offset and skew estimation. Specifically, we investigate and demonstrate the substantial benefit of Belief Propagation (BP) running on Factor Graphs (FGs) in achieving precise network-wide synchronization. Moreover, we take advantage of Bayesian Recursive Filtering (BRF) to mitigate the time-stamping error in pairwise synchronization. Finally, we reveal the merit of hybrid synchronization by dividing a large-scale network into common and local synchronization domains, thereby being able to apply the most suitable synchronization algorithm (BP- or BRF-based) on each domain. Secondly, we propose a Deep Neural Network (DNN)-assisted Particle Filter-based (DePF) approach to address the MU joint sync&loc problem. In particular, DePF deploys an asymmetric time-stamp exchange mechanism between the MUs and the APs, which provides information about the MUs' clock offset, skew, and AP-MU distance. In addition, to estimate the Angle of Arrival (AoA) of the received synchronization packet, DePF draws on the Multiple Signal Classification (MUSIC) algorithm that is fed by the Channel Impulse Response (CIR) experienced by the sync packets. The CIR is also leveraged on to determine the link condition, i.e. Line-of-Sight (LoS) or Non-LoS (NLoS). Finally DePF capitalizes on particle Gaussian mixtures which allow for a hybrid particle-based and parametric BRF fusion of the aforementioned pieces of information and jointly estimate the position and clock parameters of the MUs

    Cooperative localization with angular measurements and posterior linearization

    Get PDF
    The application of cooperative localization in vehicular networks is attractive to improve accuracy and coverage of the positioning. Conventional distance measurements between vehicles are limited by the need for synchronization and provide no heading information of the vehicle. To address this, we present a cooperative localization algorithm using posterior linearization belief propagation (PLBP) utilizing angle-of-arrival (AoA)-only measurements. Simulation results show that both directional and positional root mean squared error (RMSE) of vehicles can be decreased significantly and converge to a low value in a few iterations. Furthermore, the influence of parameters for the vehicular network, such as vehicle density, communication radius, prior uncertainty, and AoA measurements noise, is analyzed

    Cooperative Localization with Angular Measurements and Posterior Linearization

    Get PDF
    The application of cooperative localization in vehicular networks is attractive to improve accuracy and coverage. Conventional distance measurements between vehicles are limited by the need for synchronization and provide no heading information of the vehicle. To address this, we present a cooperative localization algorithm using posterior linearization belief propagation (PLBP) utilizing angle-of-arrival (AoA)-only measurements. Simulation results show that both directional and positional root mean squared error (RMSE) of vehicles can be decreased significantly and converge to a low value in a few iterations. Furthermore, the influence of parameters for the vehicular network, such as vehicle density, communication radius, prior uncertainty and AoA measurements noise, is analyzed.Comment: Submitted for possible publication to an IEEE conferenc
    corecore