100 research outputs found

    3-D Hybrid VLC-RF Indoor IoT Systems with Light Energy Harvesting

    Get PDF
    In this paper, a 3-dimensional (3-D) hybrid visible light communication (VLC)-radio frequency (RF) indoor internet of things system with spatially random terminals with one photodiode (e.g., indoor sensors: temperature sensors, humidity sensors, and indoor air quality sensors) is considered. Specifically, homogeneous Poisson point process is adopted to model to the distribution of the terminals, which means that the number of the terminals obeys Poisson distribution, and the positions of the terminals are uniformly distributed. VLC and RF communications are employed over downlink and uplink, respectively. Meanwhile, the terminals are designed to harvest the energy from the light emitted by the light-emitting diode over the downlink, which is used for the transmissions over the uplink. The light energy harvesting model is considered after introducing the line of sight propagation model for VLC. Then, the outage performance has been studied for the VLC downlink and non-orthogonal multiple access schemes over the RF uplink, respectively, by using stochastic geometry theory, while considering the randomness of the number of the terminals, and all terminals are spatially and randomly distributed in the 3-D room and all RF uplinks follow Rician fading. Finally, the approximated analytical expressions for the outage probability are derived and verified through Monte Carlo simulations

    Mixed RF-VLC Relaying Systems for Interference-Sensitive Mobile Applications

    Full text link
    Due to their Radio-Frequency (RF) immunity, Visible Light Communications (VLC) pose as a promising technology for interference sensitive applications such as medical data networks. In this paper, we investigate mixed RF-VLC relaying systems especially suited for this type of applications that support mobility. In this system setup, the end-user, who is assumed to be on a vehicle that is in dynamic movement, is served by an indoor VLC system, while the outdoor data traffic is conveyed through multiple backhaul RF links. Furthermore, it is assumed that a single backhaul RF link is activated by the mobile relay and due to feedback delay, the RF link activation is based on outdated channel state information (CSI). The performance of this system is analyzed in terms of outage probability and bit error rate (BER), and novel closed form analytical expressions are provided. Furthermore, the analysis is extended for the case where the average SNR over the RF links and/or LED optical power is high, and approximate analytical expressions are derived which determine performance floors. Numerical results are provided which demonstrate that the utilization of multiple RF backhaul links can significantly improve overall RF-VLC system performance when outage/BER floors are avoided. This calls upon joint design of both subsystems. Additionally, the outdated CSI exploited for active RF selection can significantly degrade the quality of system performance.Comment: Published in IEEE Transactions on Vehicular Technolog

    Physical Layer Security for Visible Light Communication Systems:A Survey

    Get PDF
    Due to the dramatic increase in high data rate services and in order to meet the demands of the fifth-generation (5G) networks, researchers from both academia and industry are exploring advanced transmission techniques, new network architectures and new frequency spectrum such as the visible light spectra. Visible light communication (VLC) particularly is an emerging technology that has been introduced as a promising solution for 5G and beyond. Although VLC systems are more immune against interference and less susceptible to security vulnerabilities since light does not penetrate through walls, security issues arise naturally in VLC channels due to their open and broadcasting nature, compared to fiber-optic systems. In addition, since VLC is considered to be an enabling technology for 5G, and security is one of the 5G fundamental requirements, security issues should be carefully addressed and resolved in the VLC context. On the other hand, due to the success of physical layer security (PLS) in improving the security of radio-frequency (RF) wireless networks, extending such PLS techniques to VLC systems has been of great interest. Only two survey papers on security in VLC have been published in the literature. However, a comparative and unified survey on PLS for VLC from information theoretic and signal processing point of views is still missing. This paper covers almost all aspects of PLS for VLC, including different channel models, input distributions, network configurations, precoding/signaling strategies, and secrecy capacity and information rates. Furthermore, we propose a number of timely and open research directions for PLS-VLC systems, including the application of measurement-based indoor and outdoor channel models, incorporating user mobility and device orientation into the channel model, and combining VLC and RF systems to realize the potential of such technologies

    Visible Light Communication Cyber Security Vulnerabilities For Indoor And Outdoor Vehicle-To-Vehicle Communication

    Get PDF
    Light fidelity (Li-Fi), developed from the approach of Visible Light Communication (VLC), is a great replacement or complement to existing radio frequency-based (RF) networks. Li-Fi is expected to be deployed in various environments were, due to Wi-Fi congestion and health limitations, RF should not be used. Moreover, VLC can provide the future fifth generation (5G) wireless technology with higher data rates for device connectivity which will alleviate the traffic demand. 5G is playing a vital role in encouraging the modern applications. In 2023, the deployment of all the cellular networks will reach more than 5 billion users globally. As a result, the security and privacy of 5G wireless networks is an essential problem as those modern applications are in people\u27s life everywhere. VLC security is as one of the core physical-layer security (PLS) solutions for 5G networks. Due to the fact that light does not penetrate through solid objects or walls, VLC naturally has higher security and privacy for indoor wireless networks compared to RF networks. However, the broadcasting nature of VLC caused concerns, e.g., eavesdropping, have created serious attention as it is a crucial step to validate the success of VLC in wild. The aim of this thesis is to properly address the security issues of VLC and further enhance the VLC nature security. We analyzed the secrecy performance of a VLC model by studying the characteristics of the transmitter, receiver and the visible light channel. Moreover, we mitigated the security threats in the VLC model for the legitimate user, by 1) implementing more access points (APs) in a multiuser VLC network that are cooperated, 2) reducing the semi-angle of LED to help improve the directivity and secrecy and, 3) using the protected zone strategy around the AP where eavesdroppers are restricted. According to the model\u27s parameters, the results showed that the secrecy performance in the proposed indoor VLC model and the vehicle-to-vehicle (V2V) VLC outdoor model using a combination of multiple PLS techniques as beamforming, secure communication zones, and friendly jamming is enhanced. The proposed model security performance was measured with respect to the signal to noise ratio (SNR), received optical power, and bit error rate (BER) Matlab simulation results

    On indoor visible light communication systems with spatially random receiver

    Get PDF
    This paper studies the performance of an indoor optical wireless communication system with visible light communication (VLC) technology in a cuboid room with a spatially random receiver. Considering that the receiver is uniformly distributed on the floor of a 4a m x 4b m x H m (where a > 0, b > 0 and H > 0) cuboid room, 4 light emitting diode (LED) lamps are all located at the center of 2a m x 2b m rectangle, which is a quarter of the ceiling area. The receiver chooses the best channel link to receive the information from the LED lamps, which depends on the distance between the receiver and each lamp. By using stochastic geometry theory, we derive the exact/approximated analytical expressions for the outage probability and the ergodic capacity, respectively. Finally, our derived analytical results are verified by Monte Carlo simulations

    On the Performance of Optical Wireless Cooperative Systems over the DGG Fading Channel

    Get PDF
    There is a growing research interests in hybrid optical and microwave wireless communications, which could be adpted in the next generation wireless networks. In this paper, based on the decode-and-forwardrelaying protocol and statistical behavior of the overall link's signal-to-noise-ratio, we consider five different practical scenarios by dering closed-form expressions for the outage and the bit error probabilities. Using Monte Carlo simulation we verify the predicted results. It is demonstrated that, decreasing the semi-angle of LED or increasing the filed of view of VLC receiver enhance the performance
    • …
    corecore