3,566 research outputs found

    Strategy Development of Revolving Fund for Small Business Grocery Store Using Information System

    Get PDF
    Purpose: This study aims at analyzing the factors influencing the ability to return capital of MSMEs in Indonesia (case study of grocery store in Surabaya). Design/methodology/approach: The sample in this study is 171 pioneering grocery stores of cooperative Crosstabulation analysis was implemented to seek the relationship between factors of store internal resources and indicators of quality cooperatives on the ability to pay MSMEs. After that, a system architechture was designed which is then formulated in fuzzy logic to create decision-making system using MYSQL database. To compare the decision result using fuzzy logic, the data obatained were analyzed using logistic regression. Findings: This study was found the results of manual calculations using logistic regression and calculation results using fuzzy logic-based information system application at www.simtokop.net, it is obtained the same recommendation on six stores that have output: “Growing” (eligible getting the revolving fund). Paper type: Research pape

    APPLICATION OF SOFT COMPUTING TECHNIQUES OVER HARD COMPUTING TECHNIQUES: A SURVEY

    Get PDF
    Soft computing is the fusion of different constituent elements. The main aim of this fusion to solve real-world problems, which are not solve by traditional approach that is hard computing. Actually, in our daily life maximum problem having uncertainty and vagueness information. So hard computing fail to solve this problems, because it give exact solution. To overcome this situation soft computing techniques plays a vital role, because it has capability to deal with uncertainty and vagueness and produce approximate result. This paper focuses on application of soft computing techniques over hard computing techniques

    Data Mining in Smart Grids

    Get PDF
    Effective smart grid operation requires rapid decisions in a data-rich, but information-limited, environment. In this context, grid sensor data-streaming cannot provide the system operators with the necessary information to act on in the time frames necessary to minimize the impact of the disturbances. Even if there are fast models that can convert the data into information, the smart grid operator must deal with the challenge of not having a full understanding of the context of the information, and, therefore, the information content cannot be used with any high degree of confidence. To address this issue, data mining has been recognized as the most promising enabling technology for improving decision-making processes, providing the right information at the right moment to the right decision-maker. This Special Issue is focused on emerging methodologies for data mining in smart grids. In this area, it addresses many relevant topics, ranging from methods for uncertainty management, to advanced dispatching. This Special Issue not only focuses on methodological breakthroughs and roadmaps in implementing the methodology, but also presents the much-needed sharing of the best practices. Topics include, but are not limited to, the following: Fuzziness in smart grids computing Emerging techniques for renewable energy forecasting Robust and proactive solution of optimal smart grids operation Fuzzy-based smart grids monitoring and control frameworks Granular computing for uncertainty management in smart grids Self-organizing and decentralized paradigms for information processin

    Explainable machine learning for project management control

    Get PDF
    Project control is a crucial phase within project management aimed at ensuring —in an integrated manner— that the project objectives are met according to plan. Earned Value Management —along with its various refinements— is the most popular and widespread method for top-down project control. For project control under uncertainty, Monte Carlo simulation and statistical/machine learning models extend the earned value framework by allowing the analysis of deviations, expected times and costs during project progress. Recent advances in explainable machine learning, in particular attribution methods based on Shapley values, can be used to link project control to activity properties, facilitating the interpretation of interrelations between activity characteristics and control objectives. This work proposes a new methodology that adds an explainability layer based on SHAP —Shapley Additive exPlanations— to different machine learning models fitted to Monte Carlo simulations of the project network during tracking control points. Specifically, our method allows for both prospective and retrospective analyses, which have different utilities: forward analysis helps to identify key relationships between the different tasks and the desired outcomes, thus being useful to make execution/replanning decisions; and backward analysis serves to identify the causes of project status during project progress. Furthermore, this method is general, model-agnostic and provides quantifiable and easily interpretable information, hence constituting a valuable tool for project control in uncertain environments

    2-D convolutional deep neural network for the multivariate prediction of photovoltaic time series

    Get PDF
    Here, we propose a new deep learning scheme to solve the energy time series prediction problem. The model implementation is based on the use of Long Short-Term Memory networks and Convolutional Neural Networks. These techniques are combined in such a fashion that interdependencies among several different time series can be exploited and used for forecasting purposes by filtering and joining their samples. The resulting learning scheme can be summarized as a superposition of network layers, resulting in a stacked deep neural architecture. We proved the accuracy and robustness of the proposed approach by testing it on real-world energy problems
    • …
    corecore