1,142 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Energy efficient radio tomographic imaging

    Get PDF
    pre-printIn this paper, our goal is to develop approaches to reduce the energy consumption in Radio Tomographic Imaging (RTI)-based methods for device free localization without giving up localization accuracy. Our key idea is to only measure those links that are near the current location of the moving object being tracked. We propose two approaches to find the most effective links near the tracked object. In our first approach, we only consider links that are in an ellipse around the current velocity vector of the moving object. In our second approach, we only consider links that cross through a circle with radius r from the current position of the moving object. Thus, rather than creating an attenuation image of the whole area in RTI, we only create the attenuation image for effective links in a small area close to the current location of the moving object. We also develop an adaptive algorithm for determining r. We evaluate the proposed approaches in terms of energy consumption and localization error in three different test areas. Our experimental results show that using our approach, we are able to save 50% to 80% of energy. Interestingly, we find that our radius-based approach actually increases the accuracy of localization

    Exploiting Heterogeneity in Networks of Aerial and Ground Robotic Agents

    Get PDF
    By taking advantage of complementary communication technologies, distinct sensing functionalities and varied motion dynamics present in a heterogeneous multi-robotic network, it is possible to accomplish a main mission objective by assigning specialized sub-tasks to specific members of a robotic team. An adequate selection of the team members and an effective coordination are some of the challenges to fully exploit the unique capabilities that these types of systems can offer. Motivated by real world applications, we focus on a multi-robotic network consisting off aerial and ground agents which has the potential to provide critical support to humans in complex settings. For instance, aerial robotic relays are capable of transporting small ground mobile sensors to expand the communication range and the situational awareness of first responders in hazardous environments. In the first part of this dissertation, we extend work on manipulation of cable-suspended loads using aerial robots by solving the problem of lifting the cable-suspended load from the ground before proceeding to transport it. Since the suspended load-quadrotor system experiences switching conditions during this critical maneuver, we define a hybrid system and show that it is differentially-flat. This property facilitates the design of a nonlinear controller which tracks a waypoint-based trajectory associated with the discrete states of the hybrid system. In addition, we address the case of unknown payload mass by combining a least-squares estimation method with the designed controller. Second, we focus on the coordination of a heterogeneous team formed by a group of ground mobile sensors and a flying communication router which is deployed to sense areas of interest in a cluttered environment. Using potential field methods, we propose a controller for the coordinated mobility of the team to guarantee inter-robot and obstacle collision avoidance as well as connectivity maintenance among the ground agents while the main goal of sensing is carried out. For the case of the aerial communications relays, we combine antenna diversity with reinforcement learning to dynamically re-locate these relays so that the received signal strength is maintained above a desired threshold. Motivated by the recent interest of combining radio frequency and optical wireless communications, we envision the implementation of an optical link between micro-scale aerial and ground robots. This type of link requires maintaining a sufficient relative transmitter-receiver position for reliable communications. In the third part of this thesis, we tackle this problem. Based on the link model, we define a connectivity cone where a minimum transmission rate is guaranteed. For example, the aerial robot has to track the ground vehicle to stay inside this cone. The control must be robust to noisy measurements. Thus, we use particle filters to obtain a better estimation of the receiver position and we design a control algorithm for the flying robot to enhance the transmission rate. Also, we consider the problem of pairing a ground sensor with an aerial vehicle, both equipped with a hybrid radio-frequency/optical wireless communication system. A challenge is positioning the flying robot within optical range when the sensor location is unknown. Thus, we take advantage of the hybrid communication scheme by developing a control strategy that uses the radio signal to guide the aerial platform to the ground sensor. Once the optical-based signal strength has achieved a certain threshold, the robot hovers within optical range. Finally, we investigate the problem of building an alliance of agents with different skills in order to satisfy the requirements imposed by a given task. We find this alliance, known also as a coalition, by using a bipartite graph in which edges represent the relation between agent capabilities and required resources for task execution. Using this graph, we build a coalition whose total capability resources can satisfy the task resource requirements. Also, we study the heterogeneity of the formed coalition to analyze how it is affected for instance by the amount of capability resources present in the agents

    An Overview of AUV Algorithms Research and Testbed at the University of Michigan

    Full text link
    This paper provides a general overview of the autonomous underwater vehicle (AUV) research projects being pursued within the Perceptual Robotics Laboratory (PeRL) at the University of Michigan. Founded in 2007, PeRL's research thrust is centered around improving AUV autonomy via algorithmic advancements in sensor-driven perceptual feedback for environmentally-based real-time mapping, navigation, and control. In this paper we discuss our three major research areas of: (1) real-time visual simultaneous localization and mapping (SLAM); (2) cooperative multi-vehicle navigation; and (3) perception-driven control. Pursuant to these research objectives, PeRL has acquired and significantly modified two commercial off-the-shelf (COTS) Ocean-Server Technology, Inc. Iver2 AUV platforms to serve as a real-world engineering testbed for algorithm development and validation. Details of the design modification, and related research enabled by this integration effort, are discussed herein.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86058/1/reustice-15.pd

    Optimal Multi-UAV Trajectory Planning for Filming Applications

    Get PDF
    Teams of multiple Unmanned Aerial Vehicles (UAVs) can be used to record large-scale outdoor scenarios and complementary views of several action points as a promising system for cinematic video recording. Generating the trajectories of the UAVs plays a key role, as it should be ensured that they comply with requirements for system dynamics, smoothness, and safety. The rise of numerical methods for nonlinear optimization is finding a ourishing field in optimization-based approaches to multi- UAV trajectory planning. In particular, these methods are rather promising for video recording applications, as they enable multiple constraints and objectives to be formulated, such as trajectory smoothness, compliance with UAV and camera dynamics, avoidance of obstacles and inter-UAV con icts, and mutual UAV visibility. The main objective of this thesis is to plan online trajectories for multi-UAV teams in video applications, formulating novel optimization problems and solving them in real time. The thesis begins by presenting a framework for carrying out autonomous cinematography missions with a team of UAVs. This framework enables media directors to design missions involving different types of shots with one or multiple cameras, running sequentially or concurrently. Second, the thesis proposes a novel non-linear formulation for the challenging problem of computing optimal multi-UAV trajectories for cinematography, integrating UAV dynamics and collision avoidance constraints, together with cinematographic aspects such as smoothness, gimbal mechanical limits, and mutual camera visibility. Lastly, the thesis describes a method for autonomous aerial recording with distributed lighting by a team of UAVs. The multi-UAV trajectory optimization problem is decoupled into two steps in order to tackle non-linear cinematographic aspects and obstacle avoidance at separate stages. This allows the trajectory planner to perform in real time and to react online to changes in dynamic environments. It is important to note that all the methods in the thesis have been validated by means of extensive simulations and field experiments. Moreover, all the software components have been developed as open source.Los equipos de vehículos aéreos no tripulados (UAV) son sistemas prometedores para grabar eventos cinematográficos, en escenarios exteriores de grandes dimensiones difíciles de cubrir o para tomar vistas complementarias de diferentes puntos de acción. La generación de trayectorias para este tipo de vehículos desempeña un papel fundamental, ya que debe garantizarse que se cumplan requisitos dinámicos, de suavidad y de seguridad. Los enfoques basados en la optimización para la planificación de trayectorias de múltiples UAVs se pueden ver beneficiados por el auge de los métodos numéricos para la resolución de problemas de optimización no lineales. En particular, estos métodos son bastante prometedores para las aplicaciones de grabación de vídeo, ya que permiten formular múltiples restricciones y objetivos, como la suavidad de la trayectoria, el cumplimiento de la dinámica del UAV y de la cámara, la evitación de obstáculos y de conflictos entre UAVs, y la visibilidad mutua. El objetivo principal de esta tesis es planificar trayectorias para equipos multi-UAV en aplicaciones de vídeo, formulando novedosos problemas de optimización y resolviéndolos en tiempo real. La tesis comienza presentando un marco de trabajo para la realización de misiones cinematográficas autónomas con un equipo de UAVs. Este marco permite a los directores de medios de comunicación diseñar misiones que incluyan diferentes tipos de tomas con una o varias cámaras, ejecutadas de forma secuencial o concurrente. En segundo lugar, la tesis propone una novedosa formulación no lineal para el difícil problema de calcular las trayectorias óptimas de los vehículos aéreos no tripulados en cinematografía, integrando en el problema la dinámica de los UAVs y las restricciones para evitar colisiones, junto con aspectos cinematográficos como la suavidad, los límites mecánicos del cardán y la visibilidad mutua de las cámaras. Por último, la tesis describe un método de grabación aérea autónoma con iluminación distribuida por un equipo de UAVs. El problema de optimización de trayectorias se desacopla en dos pasos para abordar los aspectos cinematográficos no lineales y la evitación de obstáculos en etapas separadas. Esto permite al planificador de trayectorias actuar en tiempo real y reaccionar en línea a los cambios en los entornos dinámicos. Es importante señalar que todos los métodos de la tesis han sido validados mediante extensas simulaciones y experimentos de campo. Además, todos los componentes del software se han desarrollado como código abierto

    Collision Free Navigation of a Multi-Robot Team for Intruder Interception

    Full text link
    In this report, we propose a decentralised motion control algorithm for the mobile robots to intercept an intruder entering (k-intercepting) or escaping (e-intercepting) a protected region. In continuation, we propose a decentralized navigation strategy (dynamic-intercepting) for a multi-robot team known as predators to intercept the intruders or in the other words, preys, from escaping a siege ring which is created by the predators. A necessary and sufficient condition for the existence of a solution of this problem is obtained. Furthermore, we propose an intelligent game-based decision-making algorithm (IGD) for a fleet of mobile robots to maximize the probability of detection in a bounded region. We prove that the proposed decentralised cooperative and non-cooperative game-based decision-making algorithm enables each robot to make the best decision to choose the shortest path with minimum local information. Then we propose a leader-follower based collision-free navigation control method for a fleet of mobile robots to traverse an unknown cluttered environment where is occupied by multiple obstacles to trap a target. We prove that each individual team member is able to traverse safely in the region, which is cluttered by many obstacles with any shapes to trap the target while using the sensors in some indefinite switching points and not continuously, which leads to saving energy consumption and increasing the battery life of the robots consequently. And finally, we propose a novel navigation strategy for a unicycle mobile robot in a cluttered area with moving obstacles based on virtual field force algorithm. The mathematical proof of the navigation laws and the computer simulations are provided to confirm the validity, robustness, and reliability of the proposed methods

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page
    corecore