183 research outputs found

    An M-QAM Signal Modulation Recognition Algorithm in AWGN Channel

    Full text link
    Computing the distinct features from input data, before the classification, is a part of complexity to the methods of Automatic Modulation Classification (AMC) which deals with modulation classification was a pattern recognition problem. Although the algorithms that focus on MultiLevel Quadrature Amplitude Modulation (M-QAM) which underneath different channel scenarios was well detailed. A search of the literature revealed indicates that few studies were done on the classification of high order M-QAM modulation schemes like128-QAM, 256-QAM, 512-QAM and1024-QAM. This work is focusing on the investigation of the powerful capability of the natural logarithmic properties and the possibility of extracting Higher-Order Cumulant's (HOC) features from input data received raw. The HOC signals were extracted under Additive White Gaussian Noise (AWGN) channel with four effective parameters which were defined to distinguished the types of modulation from the set; 4-QAM~1024-QAM. This approach makes the recognizer more intelligent and improves the success rate of classification. From simulation results, which was achieved under statistical models for noisy channels, manifest that recognized algorithm executes was recognizing in M-QAM, furthermore, most results were promising and showed that the logarithmic classifier works well over both AWGN and different fading channels, as well as it can achieve a reliable recognition rate even at a lower signal-to-noise ratio (less than zero), it can be considered as an Integrated Automatic Modulation Classification (AMC) system in order to identify high order of M-QAM signals that applied a unique logarithmic classifier, to represents higher versatility, hence it has a superior performance via all previous works in automatic modulation identification systemComment: 18 page

    Cognitive Radio Communications for Vehicular Technology – Wavelet Applications

    Get PDF
    Wireless communications are nowadays a dominant part of our lives: from domotics, through industrial applications and up to infomobility services. The key to the co-existence of wireless systems operating in closely located or even overlapping areas, is sharing of the spectral resource. The optimization of this resource is the main driving force behind the emerging changes in the policies for radio resources allocation. The current approach in spectrum usage specifies fixed frequency bands and transmission power limits for each radio transmitting system. This approach leads to a very low medium utilization factor for some frequency bands, caused by inefficient service allocation over vast geographical areas (radiomobile, radio and TV broadcasting, WiMAX) and also by the usage of large guard bands, obsolete now due to technological progress. A more flexible use of the spectral resource implies that the radio transceivers have the ability to monitor their radio environment and to adapt at specific transmission conditions. If this concept is supplemented with learning and decision capabilities, we refer to the Cognitive Radio (CR) paradigm. Some of the characteristics of a CR include localization, monitoring of the spectrum usage, frequency changing, transmission power control and, finally, the capacity of dynamically altering all these parameters (Haykin, 2005). This new cognitive approach is expected to have an important impact on the future regulations and spectrum policies. The dynamic access at the spectral resource is of extreme interest both for the scientific community as, considering the continuous request for wideband services, for the development of wireless technologies. From this point of view, a fundamental role is played by the Institute of Electrical and Electronic Engineers (IEEE) which in 2007 formed the Standards Coordinating Committee (SCC) 41 on Dynamic Spectrum Access Networks (DySPAN) having as main objective a standard for dynamic access wireless networks. Still within the IEEE frame, the 802.22 initiative defines a new WRAN (Wireless Regional Area Network) interface for wideband access based on cognitive radio techniques in the TV guard bands (the so-called “white spaces”). Coupled with the advantages and flexibility of CR systems and technologies, there is an ever-growing interest around the world in exploiting CR-enabled communications in vehicular and transportation environments. The integration of CR devices and cognitive radio networks into vehicles and associated infrastructures can lead to intelligent interactions with the transportation system, among vehicles, and even among radios within vehicles. Thus, improvements can be achieved in radio resource management and energy efficiency, road traffic management, network management, vehicular diagnostics, road traffic awareness for applications such as route planning, mobile commerce, and much more. Still open within the framework of dynamic and distributed access to the radio resource are the methods for monitoring the radio environment (the so-called “spectrum sensing”) and the transceiver technology to be used on the radio channels. A CR system works on a opportunistic basis searching for unused frequency bands called “white spaces” within the radio frequency spectrum with the intent to operate invisibly and without disturbing the primary users (PU) holding a license for one or more frequency bands. Spectrum sensing, that is, the fast and reliable detection of the PU’s even in the presence of in-band noise, is still a very complex problem with a decisive impact on the functionalities and capabilities of the CRs. The spectrum sensing techniques can be classified in two types: local and cooperative (distributed). The local techniques are performed by single devices exploiting the spectrum occupancy information in their spatial neighbourhood and can be divided into three categories (Budiarjo et al., 2008): "matched filter" (detection of pilot signals, preambles, etc.), "energy detection” (signal strength analysis) and “feature detection" (classification of signals according to their characteristics). Also, a combination of local techniques in a multi-stage design can be used to improve the sensing accuracy (Maleki et al., 2010). Nevertheless, the above-mentioned techniques are mostly inefficient for signals with reduced power or affected by phenomena typical for vehicular technology applications, such as shadowing and multi-path fading. To overcome such problems, cooperatives techniques can be used. Cooperative sensing is based on the aggregation of the spectrum data detected by multiple nodes using cognitive convergence algorithms in order to avoid the channel impairment problems that can lead to false detections. (Sanna et al., 2009). Within the energy detection method, a particular attention needs to be paid to the properties of the packets wavelet transformation for subband analysis, which, according to the literature, seems to be a feasible alternative to the classical FFT-based energy detection. Vehicular applications are in most cases characterized by the need of coping with fast changes in the radio environment, which lead, in this specific case of cognitive communication, to constrains in terms of short execution time of the spectrum sensing operations. From this point of view, the computational complexity of the wavelet packets method is of the same order of the state-of-the-art FFT algorithms, but the number of mathematical operations is lower using IIR polyphase filters (Murroni et al., 2010). In our work we are investigating the use of the wavelet packets for energy detection spectrum sensing operations based on the consideration that they have a finite duration and are self- and mutually-orthogonal at integer multiples of dyadic intervals. Hence, they are suitable for subband division and analysis: a generic signal can be then decomposed on the wavelet packet basis and represented as a collection of coefficients belonging to orthogonal subbands. Therefore, the total power of the signal can be evaluated as sum of the contributions of each subband, which can be separately computed in the wavelet domain. Furthermore, the wavelet packets can be used also for the feature detection spectrum sensing, using statistical parameters such as moments and medians. We concentrate in our research on both applications of the wavelet packets to the spectrum sensing operations, investigating their efficiency in terms of reliability and execution time, applied specifically to the needs of vehicular technology and transportation environments. The other key issue for the development of the previously mentioned standard is the choice of an adaptive/multicarrier modulation as basic candidate for data transmission, having as the most known representative the Orthogonal Frequency Division Multiplexing (OFDM) modulation. OFDM-like schemes are mature enough to be chosen as a core technology for dynamic access wireless networks. At the same time, the potentialities in terms of optimization for this specific purpose are not yet thoroughly investigated. Particularly, the Wavelet Packet Division Multiplexing (WPDM) modulation method, already known for about ten years to the scientific community, is a suitable candidate to satisfy the requirements on physical level for a dynamic access network (Wong et al., 1997): WPDM has already proven to be able to overcome some of the OFDM limits (limited spectral efficiency, problems with temporal synchronization especially in channels affected by fading) and is at the same time based on use of the same wavelet packets employed for subband analysis used for spectrum sensing operations . Our research investigates the use of the WPDM for cognitive radio purposes, combined with the wavelet approach for spectrum sensing, for offering a complete, wavelet-based solution for cognitive application focused on the problematic of vehicular communication (channel impairments, high relative velocity of the communication peers etc.)

    Blind Demodulation of Pass Band OFDMA Signals and Jamming Battle Damage Assessment Utilizing Link Adaptation

    Get PDF
    This research focuses on blind demodulation of a pass band OFDMA signal so that jamming effectiveness can be assessed; referred to in this research as BDA. The research extends, modifies and collates work within literature to perform a new method of blindly demodulating of a passband OFDMA signal, which exhibits properties of the 802.16 Wireless MAN OFDMA standard, and presents a novel method for performing BDA via observation of SC LA. Blind demodulation is achieved by estimating the carrier frequency, sampling rate, pulse shaping filter roll off factor, synchronization parameters and CFO. The blind demodulator\u27s performance in AWGN and a perfect channel is evaluated where it improves using a greater number OFDMA DL symbols and increased CP length. Performance in a channel with a single multi-path interferer is also evaluated where the blind demodulator\u27s performance is degraded. BDA is achieved via observing SC LA modulation behavior of the blindly demodulated signal between successive OFDMA DL sub frames in two scenarios. The first is where modulation signaling can be used to observe change of SC modulation. The second assumes modulation signaling is not available and the SC\u27s modulation must be classified. Classification of SC modulation is performed using sixth-order cumulants where performance increases with the number of OFDMA symbols. The SC modulation classi er is susceptible to the CFO caused by blind demodulation. In a perfect channel it is shown that SC modulation can be classified using a variety of OFDMA DL sub frame lengths in symbols. The SC modulation classifier experienced degraded performance in a multi-path channel and it is recommended that it is extended to perform channel equalization in future work

    A Survey of Blind Modulation Classification Techniques for OFDM Signals

    Get PDF
    Blind modulation classification (MC) is an integral part of designing an adaptive or intelligent transceiver for future wireless communications. Blind MC has several applications in the adaptive and automated systems of sixth generation (6G) communications to improve spectral efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent software-defined radios (SDR) for future communication. In this paper, we provide various MC techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We focus on the most widely used statistical and machine learning (ML) models and emphasize their advantages and limitations. The statistical-based blind MC includes likelihood-based (LB), maximum a posteriori (MAP) and feature-based methods (FB). The ML-based automated MC includes k-nearest neighbors (KNN), support vector machine (SVM), decision trees (DTs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) based MC methods. This survey will help the reader to understand the main characteristics of each technique, their advantages and disadvantages. We have also simulated some primary methods, i.e., statistical- and ML-based algorithms, under various constraints, which allows a fair comparison among different methodologies. The overall system performance in terms bit error rate (BER) in the presence of MC is also provided. We also provide a survey of some practical experiment works carried out through National Instrument hardware over an indoor propagation environment. In the end, open problems and possible directions for blind MC research are briefly discussed

    A Robust Cooperative Modulation Classification Scheme with Intra sensor Fusion for the Time correlated Flat Fading Channels

    Get PDF
    Networks with distributed sensors, e.g. cognitive radio networks or wireless sensor networks enable large-scale deployments of cooperative automatic modulation classification (AMC). Existing cooperative AMC schemes with centralised fusion offer considerable performance increase in comparison to single sensor reception. Previous studies were generally focused on AMC scenarios in which multipath channel is assumed to be static during a signal reception. However, in practical mobile environments, time-correlated multipath channels occur, which induce large negative influence on the existing cooperative AMC solutions. In this paper, we propose two novel cooperative AMC schemes with the additional intra-sensor fusion, and show that these offer significant performance improvements over the existing ones under given conditions

    Joint 1D and 2D Neural Networks for Automatic Modulation Recognition

    Get PDF
    The digital communication and radar community has recently manifested more interest in using data-driven approaches for tasks such as modulation recognition, channel estimation and distortion correction. In this research we seek to apply an object detector for parameter estimation to perform waveform separation in the time and frequency domain prior to classification. This enables the full automation of detecting and classifying simultaneously occurring waveforms. We leverage a lD ResNet implemented by O\u27Shea et al. in [1] and the YOLO v3 object detector designed by Redmon et al. in [2]. We conducted an in depth study of the performance of these architectures and integrated the models to perform joint detection and classification. To our knowledge, the present research is the first to study and successfully combine a lD ResNet classifier and Yolo v3 object detector to fully automate the process of AMR for parameter estimation, pulse extraction and waveform classification for non-cooperative scenarios. The overall performance of the joint detector/ classifier is 90 at 10 dB signal to noise ratio for 24 digital and analog modulations

    Advanced methods in automatic modulation classification for emerging technologies

    Get PDF
    Modulation classification (MC) is of large importance in both military and commercial communication applications. It is a challenging problem, especially in non-cooperative wireless environments, where channel fading and no prior knowledge on the incoming signal are major factors that deteriorate the reception performance. Although the average likelihood ratio test method can provide an optimal solution to the MC problem with unknown parameters, it suffers from high computational complexity and in some cases mathematical intractability. Instead, in this research, an array-based quasi-hybrid likelihood ratio test (qHLRT) algorithm is proposed, which depicts two major advantages. First, it is simple yet accurate enough parameter estimation with reduced complexity. Second the incorporation of antenna arrays offers an effective ability to combat fading. Furthermore, a practical array-based qHLRT classifier scheme is implemented, which applies maximal ratio combining (MRC) to increase the accuracy of both carrier frequency offset (CFO) estimation and likelihood function calculation in channel fading. In fact, double CFO estimations are executed in this classifier. With the first the unknown CFO, phase offsets and amplitudes are estimated as prerequisite for MRC operation. Then, MRC is performed using these estimates, followed by a second CFO estimator. Since the input of the second CFO estimator is the output of the MRC, fading effects on the incoming signals are removed significantly and signal-to-noise ratio (SNR) is augmented. As a result, a more accurate CFO estimate is obtained. Consequently, the overall classification performance is improved, especially in low SNR environment. Recently, many state-of-the-arts communication technologies, such as orthogonal frequency division multiplexing (OFDM) modulations, have been emerging. The need for distinguishing OFDM signal from single carrier has become obvious. Besides, some vital parameters of OFDM signals should be extracted for further processing. In comparison to the research on MC for single carrier single antenna transmission, much less attention has been paid to the MC for emerging modulation methods. A comprehensive classification system is proposed for recognizing the OFDM signal and extracting its parameters. An automatic OFDM modulation classifier is proposed, which is based on the goodness-of-fittest. Since OFDM signal is Gaussian, Cramer-von Mises technique, working on the empirical distribution function, has been applied to test the presence of the normality. Numerical results show that such approach can successfully identify OFDM signals from single carrier modulations over a wide SNR range. Moreover, the proposed scheme can provide the acceptable performance when frequency-selective fading is present. Correlation test is then applied to estimate OFDM cyclic prefix duration. A two-phase searching scheme, which is based on Fast Fourier Transform (FFT) as well as Gaussianity test, is devised to detect the number of subcarriers. In the first phase, a coarse search is carried out iteratively. The exact number of subcarriers is determined by the fine tune in the second phase. Both analytical work and numerical results are presented to verify the efficiency of the proposed scheme
    • …
    corecore