2,691 research outputs found

    Search Based Software Project Management

    Get PDF
    This thesis investigates the application of Search Based Software Engineering (SBSE) approach in the field of Software Project Management (SPM). With SBSE approaches, a pool of candidate solutions to an SPM problem is automatically generated and gradually evolved to be increasingly more desirable. The thesis is motivated by the observation from industrial practice that it is much more helpful to the project manager to provide insightful knowledge than exact solutions. We investigate whether SBSE approaches can aid the project managers in decision making by not only providing them with desirable solutions, but also illustrating insightful “what-if” scenarios during the phases of project initiation, planning and enactment. SBSE techniques can automatically “evolve” solutions to software requirement elicitation, project staffing and scheduling problems. However, the current state-of- the-art computer-aided software project management tools remain limited in several aspects. First, software requirement engineering is plagued by problems associated with unreliable estimates. The estimations made early are assumed to be accurate, but the projects are estimated and executed in an environment filled with uncertainties that may lead to delay or disruptions. Second, software project scheduling and staffing are two closely related problems that have been studied separately by most published research in the field of computer aided software project management, but software project managers are usually confronted with the complex trade-off and correlations of scheduling and staffing. Last, full attendance of required staff is usually assumed after the staff have been assigned to the project, but the execution of a project is subject to staff absences because of sickness and turnover, for example. This thesis makes the following main contributions: (1) Introducing an automated SBSE approach to Sensitivity Analysis for requirement elicitation, which helps to achieve more accurate estimations by directing extra estimation effort towards those error-sensitive requirements and budgets. (2) Demonstrating that Co-evolutionary approaches can simultaneously co-evolve solutions for both work package sequencing and project team sizing. The proposed approach to these two interrelated problems yields better results than random and single-population evolutionary algorithms. (3) Presenting co-evolutionary approaches that can guide the project manager to anticipate and ameliorate the impact of staff absence. (4) The investigations of seven sets of real world data on software requirement and software project plans reveal general insights as well as exceptions of our approach in practise. (5) The establishment of a tool that implements the above concepts. These contributions support the thesis that automated SBSE tools can be beneficial to solution generation, and most importantly, insightful knowledge for decision making in the practise of software project management

    A Unified Framework for Solving Multiagent Task Assignment Problems

    Get PDF
    Multiagent task assignment problem descriptors do not fully represent the complex interactions in a multiagent domain, and algorithmic solutions vary widely depending on how the domain is represented. This issue is compounded as related research fields contain descriptors that similarly describe multiagent task assignment problems, including complex domain interactions, but generally do not provide the mechanisms needed to solve the multiagent aspect of task assignment. This research presents a unified approach to representing and solving the multiagent task assignment problem for complex problem domains. Ideas central to multiagent task allocation, project scheduling, constraint satisfaction, and coalition formation are combined to form the basis of the constrained multiagent task scheduling (CMTS) problem. Basic analysis reveals the exponential size of the solution space for a CMTS problem, approximated by O(2n(m+n)) based on the number of agents and tasks involved in a problem. The shape of the solution space is shown to contain numerous discontinuous regions due to the complexities involved in relational constraints defined between agents and tasks. The CMTS descriptor represents a wide range of classical and modern problems, such as job shop scheduling, the traveling salesman problem, vehicle routing, and cooperative multi-object tracking. Problems using the CMTS representation are solvable by a suite of algorithms, with varying degrees of suitability. Solution generating methods range from simple random scheduling to state-of-the-art biologically inspired approaches. Techniques from classical task assignment solvers are extended to handle multiagent task problems where agents can also multitask. Additional ideas are incorporated from constraint satisfaction, project scheduling, evolutionary algorithms, dynamic coalition formation, auctioning, and behavior-based robotics to highlight how different solution generation strategies apply to the complex problem space

    Requirements for building information modeling based lean production management systems for construction

    Get PDF
    Smooth flow of production in construction is hampered by disparity between individual trade teams' goals and the goals of stable production flow for the project as a whole. This is exacerbated by the difficulty of visualizing the flow of work in a construction project. While the addresses some of the issues in Building information modeling provides a powerful platform for visualizing work flow in control systems that also enable pull flow and deeper collaboration between teams on and off site. The requirements for implementation of a BIM-enabled pull flow construction management software system based on the Last Planner System™, called ‘KanBIM’, have been specified, and a set of functional mock-ups of the proposed system has been implemented and evaluated in a series of three focus group workshops. The requirements cover the areas of maintenance of work flow stability, enabling negotiation and commitment between teams, lean production planning with sophisticated pull flow control, and effective communication and visualization of flow. The evaluation results show that the system holds the potential to improve work flow and reduce waste by providing both process and product visualization at the work face

    Air Force Institute of Technology Research Report 2004

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, and Engineering Physics

    Air Force Institute of Technology Research Report 2005

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, and Engineering Physics

    Air Force Institute of Technology Research Report 2001

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, and Engineering Physics
    • …
    corecore