1,540 research outputs found

    Outage Performance of Two-Hop OFDM Systems with Spatially Random Decode-and-Forward Relays

    Full text link
    In this paper, we analyze the outage performance of different multicarrier relay selection schemes for two-hop orthogonal frequency-division multiplexing (OFDM) systems in a Poisson field of relays. In particular, special emphasis is placed on decode-and-forward (DF) relay systems, equipped with bulk and per-subcarrier selection schemes, respectively. The exact expressions for outage probability are derived in integrals for general cases. In addition, asymptotic expressions for outage probability in the high signal-to-noise ratio (SNR) region in the finite circle relay distribution region are determined in closed forms for both relay selection schemes. Also, the outage probabilities for free space in the infinite relay distribution region are derived in closed forms. Meanwhile, a series of important properties related to cooperative systems in random networks are investigated, including diversity, outage probability ratio of two selection schemes and optimization of the number of subcarriers in terms of system throughput. All analysis is numerically verified by simulations. Finally, a framework for analyzing the outage performance of OFDM systems with spatially random relays is constructed, which can be easily modified to analyze other similar cases with different forwarding protocols, location distributions and/or channel conditions

    Jointly Optimal Channel and Power Assignment for Dual-Hop Multi-channel Multi-user Relaying

    Full text link
    We consider the problem of jointly optimizing channel pairing, channel-user assignment, and power allocation, to maximize the weighted sum-rate, in a single-relay cooperative system with multiple channels and multiple users. Common relaying strategies are considered, and transmission power constraints are imposed on both individual transmitters and the aggregate over all transmitters. The joint optimization problem naturally leads to a mixed-integer program. Despite the general expectation that such problems are intractable, we construct an efficient algorithm to find an optimal solution, which incurs computational complexity that is polynomial in the number of channels and the number of users. We further demonstrate through numerical experiments that the jointly optimal solution can significantly improve system performance over its suboptimal alternatives.Comment: This is the full version of a paper to appear in the IEEE Journal on Selected Areas in Communications, Special Issue on Cooperative Networking - Challenges and Applications (Part II), October 201

    Performance analysis of diversity techniques in wireless communication systems: Cooperative systems with CCI and MIMO-OFDM systems

    Get PDF
    This Dissertation analyzes the performance of ecient digital commu- nication systems, the performance analysis includes the bit error rate (BER) of dier- ent binary and M-ary modulation schemes, and the average channel capacity (ACC) under dierent adaptive transmission protocols, namely, the simultaneous power and rate adaptation protocol (OPRA), the optimal rate with xed power protocol (ORA), the channel inversion with xed rate protocol (CIFR), and the truncated channel in- version with xed transmit power protocol (CTIFR). In this dissertation, BER and ACC performance of interference-limited dual-hop decode-and-forward (DF) relay- ing cooperative systems with co-channel interference (CCI) at both the relay and destination nodes is analyzed in small-scale multipath Nakagami-m fading channels with arbitrary (integer as well as non-integer) values of m. This channel condition is assumed for both the desired signal as well as co-channel interfering signals. In addition, the practical case of unequal average fading powers between the two hops is assumed in the analysis. The analysis assumes an arbitrary number of indepen- dent and non-identically distributed (i.n.i.d.) interfering signals at both relay (R) and destination (D) nodes. Also, the work extended to the case when the receiver employs the maximum ratio combining (MRC) and the equal gain combining (EGC) schemes to exploit the diversity gain

    Optimization Framework and Graph-Based Approach for Relay-Assisted Bidirectional OFDMA Cellular Networks

    Full text link
    This paper considers a relay-assisted bidirectional cellular network where the base station (BS) communicates with each mobile station (MS) using OFDMA for both uplink and downlink. The goal is to improve the overall system performance by exploring the full potential of the network in various dimensions including user, subcarrier, relay, and bidirectional traffic. In this work, we first introduce a novel three-time-slot time-division duplexing (TDD) transmission protocol. This protocol unifies direct transmission, one-way relaying and network-coded two-way relaying between the BS and each MS. Using the proposed three-time-slot TDD protocol, we then propose an optimization framework for resource allocation to achieve the following gains: cooperative diversity (via relay selection), network coding gain (via bidirectional transmission mode selection), and multiuser diversity (via subcarrier assignment). We formulate the problem as a combinatorial optimization problem, which is NP-complete. To make it more tractable, we adopt a graph-based approach. We first establish the equivalence between the original problem and a maximum weighted clique problem in graph theory. A metaheuristic algorithm based on any colony optimization (ACO) is then employed to find the solution in polynomial time. Simulation results demonstrate that the proposed protocol together with the ACO algorithm significantly enhances the system total throughput.Comment: 27 pages, 8 figures, 2 table

    Dual-hop transmissions with fixed-gain relays over Generalized-Gamma fading channels

    Get PDF
    In this paper, a study on the end-to-end performance of dual-hop wireless communication systems equipped with fixed-gain relays and operating over Generalized-Gamma (GG) fading channels is presented. A novel closed form expression for the moments of the end-to-end signal-to-noise ratio (SNR) is derived. The average bit error probability for coherent and non-coherent modulation schemes as well as the end-to-end outage probability of the considered system are also studied. Extensive numerically evaluated and computer simulations results are presented that verify the accuracy of the proposed mathematical analysis.\u
    • …
    corecore